JVM的垃圾回收机制
有两个混淆的概念特别要注意:GC的对象死活判断算法(用于确认这个对象还有没有用)和GC的对象清除算法(进行对象清理的算法)
jvm数据分区
垃圾回收机制简称GC,GC主要用于Java堆的管理。Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象。
程序在运行过程中,会产生大量的内存垃圾(一些没有引用指向的内存对象都属于内存垃圾,因为这些对象已经无法访问,程序用不了它们了,对程序而言它们已经死亡),为了确保程序运行时的性能,java虚拟机在程序运行的过程中不断地进行自动的垃圾回收(GC)。GC是不定时去堆内存中清理不可达对象。不可达的对象并不会马上就会直接回收, 垃圾收集器在一个Java程序中的执行是自动的,不能强制执行清楚那个对象,即使程序员能明确地判断出有一块内存已经无用了,是应该回收的,程序员也不能强制垃圾收集器回收该内存块。程序员唯一能做的就是通过调用System.gc 方法来"建议"执行垃圾收集器,但是他是否执行,什么时候执行却都是不可知的。这也是垃圾收集器的最主要的缺点。当然相对于它给程序员带来的巨大方便性而言,这个缺点是瑕不掩瑜的。
手动执行GC:
System.gc(); // 手动回收垃圾
finalize方法作用
finalize()方法是在每次执行GC操作之前时会调用的方法,可以用它做必要的清理工作。
它是在Object类中定义的,因此所有的类都继承了它。子类覆盖finalize()方法以整理系统资源或者执行其他清理工作。finalize()方法是在垃圾收集器删除对象之前对这个对象调用的。
代码演示:
package com.example.dtest.gc;
public class GCTest {
public static void main(String[] args) {
GCTest gcTest = new GCTest();
gcTest = null;
System.gc();
}
@Override
protected void finalize() throws Throwable {
// gc回收垃圾之前调用
System.out.println("gc回收垃圾之前调用的方法");
}
}
1、引用计数法
引用计数法就是如果一个对象没有被任何引用指向,则可视之为垃圾。这种方法的缺点就是不能检测到环的存在。
首先需要声明,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存。
什么是引用计数法:每个对象在创建的时候,就给这个对象绑定一个计数器。每当有一个引用指向该对象时,计数器加一;每当有一个指向它的引用被删除时,计数器减一。这样,当没有引用指向该对象时,计数器为0就代表该对象死亡
引用计数法的优点:
引用计数算法的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法,
引用计数法的缺点:
主流的Java虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题。
由于不能处理循环引用的问题,所以建议不要用
2、可达性分析法
该种方法是从GC Roots开始向下搜索,搜索所走过的路径为引用链。当一个对象到GC Roots没用任何引用链时,则证明此对象是不可用的,表示可以回收。
上图上图中Object1、Object2、Object3、Object4、Object5到GC Roots是可达的,表示它们是有引用的对象,是存活的对象不可以进行回收
Object6、Object7、Object8虽然是互相关联的,但是它们到GC Roots是不可达的,所以他们是可以进行回收的对象
可以作为GC Roots 的对象:
1、虚拟机栈(栈帧中的本地变量表)中引用的对象;
2、方法区中类静态属于引用的对象;
3、方法区中常量引用的对象;
4、本地方法栈中JNI(即一般说的Native方法)引用的对象。
可达性算法的优点:
解决相互循环引用问题。
可达性算法的优点:
目前和引用计数法比没得缺点
可达性算法的应用场景:
这是目前主流的虚拟机都是采用的算法
1、引用计数算法(Reference counting)
注意它既是判断对象是否有用,又是清除算法,上面已经说过了
2、标记–清除算法(Mark-Sweep)
为每个对象存储一个标记位,记录对象的状态(活着或是死亡)。
分为两个阶段,一个是标记阶段,这个阶段内,为每个对象更新标记位,检查对象是否死亡;第二个阶段是清除阶段,该阶段对死亡的对象进行清除,执行 GC 操作。
标记清除算法的优点:
是可以解决循环引用的问题
必要时才回收(内存不足时)
标记清除算法的缺点:
回收时,应用需要挂起,也就是stop the world。
标记和清除的效率不高,尤其是要扫描的对象比较多的时候
会造成内存碎片(会导致明明有内存空间,但是由于不连续,申请稍微大一些的对象无法做到),
标记清除算法的应用场景:
该算法一般应用于老年代,因为老年代的对象生命周期比较长。
3、标记–整理算法
标记清除算法和标记压缩算法非常相同,但是标记压缩算法在标记清除算法之上解决内存碎片化(有些人叫"标记整理算法"为"标记压缩算法")
标记-整理法是标记-清除法的一个改进版。同样,在标记阶段,该算法也将所有对象标记为存活和死亡两种状态;不同的是,在第二个阶段,该算法并没有直接对死亡的对象进行清理,而是将所有存活的对象整理一下,放到另一处空间,然后把剩下的所有对象全部清除。这样就达到了标记-整理的目的。
标记–整理算法优点:
解决标记清除算法出现的内存碎片问题,
标记–整理算法缺点:
压缩阶段,由于移动了可用对象,需要去更新引用。
标记–整理算法应用场景:
该算法一般应用于老年代,因为老年代的对象生命周期比较长。
4、 复制算法
该算法将内存平均分成两部分,然后每次只使用其中的一部分,当这部分内存满的时候,将内存中所有存活的对象复制到另一个内存中,然后将之前的内存清空,只使用这部分内存,循环下去。
这个算法与标记-整理算法的区别在于,该算法不是在同一个区域复制,而是将所有存活的对象复制到另一个区域内。
复制算法的优点:
在存活对象不多的情况下,性能高,能解决内存碎片和java垃圾回收算法之-标记清除 中导致的引用更新问题。
复制算法的缺点:
会造成一部分的内存浪费。不过可以根据实际情况,将内存块大小比例适当调整;如果存活对象的数量比较大,复制算法的性能会变得很差。
复制算法的应用场景:
复制算法一般是使用在新生代中,因为新生代中的对象一般都是朝生夕死的,存活对象的数量并不多,这样使用复制算法进行拷贝时效率比较高。
jvm将Heap(堆)内存划分为新生代与老年代。又将新生代划分为Eden与2块Survivor Space(幸存者区) ,然后在Eden –>Survivor Space 与To Survivor之间实行复制算法。
不过jvm在应用复制算法时,并不是把内存按照1:1来划分的,这样太浪费内存空间了。一般的jvm都是8:1。也即是说,Eden区:From区:To区域的比例是始终有90%的空间是可以用来创建对象的,而剩下的10%用来存放回收后存活的对象。
5、分代算法(主要的算法就是上面四种,这个是附加的)
这种算法,根据对象的存活周期的不同将内存划分成几块,新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。可以用抓重点的思路来理解这个算法。
新生代对象朝生夕死,对象数量多,只要重点扫描这个区域,那么就可以大大提高垃圾收集的效率。另外老年代对象存储久,无需经常扫描老年代,避免扫描导致的开销。
新生代
在新生代,每次垃圾收集器都发现有大批对象死去,只有少量存活,采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。
老年代
而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须“标记清除法或者标记整理算法进行回收。
新生代、老年代、永久代(方法区)的区别:
1、Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象。
2、在 Java 中,堆被划分成两个不同的区域:新生代 ( Young )、老年代 ( Old )。
3、老年代就一个区域。新生代 ( Young ) 又被划分为三个区域:Eden、From Survivor、To Survivor。
4、这样划分的目的是为了使 JVM 能够更好的管理堆内存中的对象,包括内存的分配以及回收。
5、默认的,新生代 ( Young ) 与老年代 ( Old ) 的比例的值为 1:2 ( 该值可以通过参数 –XX:NewRatio 来指定 ),即:新生代 ( Young ) = 1/3 的堆空间大小。老年代 ( Old ) = 2/3 的堆空间大小。
6、其中,新生代 ( Young ) 被细分为 Eden 和 两个 Survivor 区域,这两个 Survivor 区域分别被命名为 From Survivor 和 ToSurvivor ,以示区分。
7、默认的,Edem : From Survivor : To Survivor = 8 : 1 : 1 ( 可以通过参数 –XX:SurvivorRatio 来设定 ),即: Eden = 8/10 的新生代空间大小,From Survivor = To Survivor = 1/10 的新生代空间大小。
8、JVM 每次只会使用 Eden 和其中的一块 Survivor 区域来为对象服务,所以无论什么时候,总是有一块 Survivor 区域是空闲着的。
9、因此,新生代实际可用的内存空间为 9/10 ( 即90% )的新生代空间。
10、永久代就是JVM的方法区。在这里都是放着一些被虚拟机加载的类信息,静态变量,常量等数据。这个区中的东西比老年代和新生代更不容易回收。
为什么要这样分代?:
其实主要原因就是可以根据各个年代的特点进行对象分区存储,更便于回收,采用最适当的收集算法:
1、新生代中,每次垃圾收集时都发现大批对象死去,只有少量对象存活,便采用了复制算法,只需要付出少量存活对象的复制成本就可以完成收集。
2、而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须采用“标记-清理”或者“标记-整理”算法。
新生代又分为Eden和Survivor (From与To,这里简称一个区)两个区。加上老年代就这三个区。数据会首先分配到Eden区当中(当然也有特殊情况,如果是大对象那么会直接放入到老年代(大对象是指需要大量连续内存空间的java对象)。当Eden没有足够空间的时候就会触发jvm发起一次Minor GC,。如果对象经过一次Minor-GC还存活,并且又能被Survivor空间接受,那么将被移动到Survivor空间当中。并将其年龄设为1,对象在Survivor每熬过一次Minor GC,年龄就加1,当年龄达到一定的程度(默认为15)时,就会被晋升到老年代中了,当然晋升老年代的年龄是可以设置的。
1、Minor GC是新生代GC,指的是发生在新生代的垃圾收集动作。由于java对象大都是朝生夕死的,所以Minor GC非常频繁,一般回收速度也比较快。
2、Major GC是老年代GC,指的是发生在老年代的GC,通常执行Major GC会连着Minor GC一起执行。Major GC的速度要比Minor GC慢的多。
3、Full GC是清理整个堆空间,包括年轻代和老年代
Minor GC 触发条件一般为:
eden区满时,触发MinorGC。即申请一个对象时,发现eden区不够用,则触发一次MinorGC。
新创建的对象大小 > Eden所剩空间
Major GC和Full GC 触发条件一般为:
Major GC通常是跟full GC是等价的
每次晋升到老年代的对象平均大小>老年代剩余空间
MinorGC后存活的对象超过了老年代剩余空间
永久代空间不足
执行System.gc()
CMS GC异常
堆内存分配很大的对象
什么是垃圾收集器?
垃圾收集器是垃圾回收算法(引用计数法、标记清楚法、标记整理法、复制算法)的具体实现,不同垃圾收集器、不同版本的JVM所提供的垃圾收集器可能会有很在差别。
以JDK8为准:
图中展示了7种不同分代的收集器:
Serial、ParNew、Parallel Scavenge、CMS、Serial Old、Parallel Old、G1
而它们所处区域,则表明其是属于新生代还是老年代的收集器:
新生代收集器:Serial、ParNew、Parallel Scavenge
老年代收集器:CMS、Serial Old、Parallel Old
整堆收集器:G1
两个收集器间有连线,表明它们可以搭配使用:
Serial / Serial Old
Serial / CMS
ParNew / Serial Old
ParNew / CMS
Parallel Scavenge / Serial Old
Parallel Scavenge / Parallel Old
G1