分布式架构

目录

一、前言

二、分布式架构的发展历史

三、分布式架构发展的里程碑

四、分布式系统的意义

五、分布式架构的常见概念

六、分布式领域中冯诺依曼模型的变化

七、分布式系统的难点

八、总结


一、前言

​  我们都知道,当今无论在BAT这样的大公司,还是各种各样的小公司,甚至是传统行业刚转互联网的企业都开始使用分布式架构,那么什么叫分布式架构呢?分布式架构有什么好处呢?分布式架构经过了怎样的发展呢?是哪家企业开启了分布式架构的时代呢?读完本文,你就会得到这些答案,下面让我们一起来开启分布式概述的奇妙之旅吧!

二、分布式架构的发展历史

​  1946年2.14日,那是一个浪漫的情人节 , 世界上第一台电子数字计算机在美国宾夕法尼亚大学诞生了,她的名字叫ENIAC。这台计算机占地170平米、重达 30 吨,每秒可以进行 5000 次加法运算。

​  第一台电子计算机诞生以后,就意味着一个日新月异的 IT 时代到来了。单台计算机的性能不断得到提升,从最早的 8 位 CPU 到现在的 64 位 CPU;从早期的 MB 级内存到现在的 GB 级别内存;从慢速的机械存储到现在的固态 SSD 硬盘存储。

​  ENIAC 之后,电子计算机就进入了 IBM 主导的大型机时代。1964 年 4 月 7 日,在吉恩.阿姆达尔(IBM 大型机之父, 被认为是有史以来最伟大的计算机设计师之一)的带领下,耗费 50 亿美元,历时三年,第一台 IBM 大型机 SYSTEM/360 诞生了。这使得 IBM 在 20 世纪 50~60 年代统治着整个大型计算机工业,奠定了 IBM 计算机帝国的基础。IBM 大型机曾支撑美国航天登月计划,IBM 主机一直服务于金融等核心行业的关键领域。由于超强的计算能力和高可靠性,即使在 X86 和云计算高速发展的背景下,IBM 的大型机依然牢牢占据着一定的高端市场份额。

​ 20 世纪 80 年代,在大型机霸权的时代下,计算机的架构同时向两个方向发展:

  • 以 CISC (微处理器执行的计算机语言指令集) CPU 为架构的面向个人、价格便宜的PC。
  • 以 RISC (精简指令集计算机) CPU 为架构的面向企业、价格昂贵的小型 UNIX 服务器。

三、分布式架构发展的里程碑

​  大型主机凭借着大型机超强的计算和 I/O 处理能力、安全性、 稳定性等,在很长一段时间内,大型机引领着计算机行业及商业计算领域的发展。而集中式的计算机系统架构也渐渐成为了主流。但是随着社会的发展,这种架构越来越难以适应企业的需求,比如说:

  • 大型主机复杂性高,培养一个能够熟练运维大型主机的人成本很高。
  • 大型主机很贵,一般只有土豪机构(政府、电信、金融)才能用得起。
  • 会有单点问题,一旦大型主机出现故障,那整个系统就将处于不可用的状态。而对于大型机的使用机构来说,这种不可用导致的损失是非常具大的。
  • 由于科技的进步、技术的发展,PC 机性能得到了不断提升,所以很多企业放弃大型机改用小型机及普通 PC 来搭建系统架构。

阿里巴巴发起的"去 IOE"运动开启新时代

​  IOE 指的是 IBM 小型机、Oracle 数据库、EMC 的高端存储。阿里巴巴2009 年“去 IOE”战略技术总监透露,截止到 2013 年 5 月 17 日阿里巴巴最后一台 IBM 小型机在支付宝下线。

为什么要去 IOE?

​  随着业务的快速发展,阿里巴巴业务量和数据量呈爆发性增长,传统集中式 Oracle 数据库架构在系统的扩展性方面遭遇到了瓶颈。 传统的商业数据库软件(Oracle,DB2)多以集中式架构为主, 那么这些传统数据库软件的最大特点就是将所有的数据都集中在 一个数据库中,只能依靠大型高端设备来提供高处理能力和扩展性。 集中式数据库的扩展性主要采用向上扩展(Scale up)的方式, 通过增加 CPU、内存、磁盘等方式提高系统处理能力。这种集中式数据库的架构,使得数据库成为了整个系统的瓶颈,已经越来越不能适应海量数据对计算能力的要求。

四、分布式系统的意义

之所以要发展分布式系统架构,是因为单机系统存在着如下诸多缺点等待被解决:

  1. 升级单机处理能力的性价比越来越低

    我们知道单机的处理能力主要依靠 CPU、内存、磁盘。通过升级硬件来这种垂直扩展的方式来提升性能,成本会越来越高。性价比会越来越低。

  2. 单机处理能力存在瓶颈

    并且单机处理能力存在瓶颈,CPU、内存、磁盘都会有自己的性能瓶颈, 就算你是土豪不惜成本去提升硬件,但是硬件的发展速度和性能也还是有限制的。

  3. 稳定性和可用性这两个指标很难达到

  4. 最后就是单机系统存在可用性和稳定性的问题,这两个指标又是我们亟待要去解决的问题。

五、分布式架构的常见概念

1.集群

​  小张开了一家小饭店,刚开始的时候店里只有一个厨师,切菜洗菜备料炒菜全干。后来由于饭香甜可口,人流量越来越多了,一个厨师忙不过来了,小张又请了两个厨师,那么这时候三个厨师炒一样的菜,做相同的切菜洗菜备料炒菜等工作,那这三个厨师的关系是集群。也就意味着来一个顾客,只有其中的一个厨师会为这个顾客服务。

2.分布式

​  又经过一段时间,店里的生意更加火爆了,小张为了让厨师们能专心炒菜,把菜做到极致,又请了个配菜师负责切菜、备菜、备料,那么厨师和配菜师的关系是分布式,后来一个配菜师也忙不过来了,小张就又请了两个配菜师,三个配菜师关系也是集群。

分布式架构_第1张图片

3.节点

​  节点是指一个可以独立按照分布式协议完成一组逻辑的程序个体。在具体的项目中,一个节点表示的是一个操作系统上的进程。 那这里的每一个配菜师和厨师都是一个节点。

4.副本机制

​  副本(replica/copy)是指在分布式系统中为数据或服务提供的冗余。 数据副本指在不同的节点上持久化同一份数据,当某一个节点出现数据丢失时,可以从副本上恢复数据。数据副本是分布式系统中解决数据丢失问题的唯一手段。 服务副本表示多个节点提供相同的服务,通过主从关系来实现服务高可用的方案。

5.中间件

​  中间件位于操作系统提供的服务之外,但又不属于应用,他是位于应用和系统层之间的、为开发者方便的处理通信、输入输出的一类软件,能够让用户只关心自己应用的部分。

六、分布式领域中冯诺依曼模型的变化

分布式架构_第2张图片

  上图是经典理论-冯.诺依曼体系,计算机硬件由运算器、 控制器、存储器、输入设备、输出设备五大部分组成。不管架构怎么变化,计算机仍没有跳出该体系的范畴。

  • 输入设备的变化

    分布式系统架构中,输入设备可以分两类:第一类是互相连接的多个节点,在接收其他节点传来的信息作为该节点的输入;另一种就是传统意义上的人机交互的输入设备了。

  • 输出设备的变化

    分布式系统架构中,输出也分两类,一种是系统中的节点向其他节点传输信息时,该节点可以看作是输出设备;另一种就是传统意义上的人际交互的输出设备,比如用户的终端。

  • 控制器的变化

    在单机中,控制器指的是 CPU 中的控制器,在分布式系统中,控制器主要的作用是协调或控制节点之间的动作和行为; 比如硬件负载均衡器;LVS 软负载;规则服务器等等。

  • 运算器

    分布式系统中,运算器是由多个节点来组成的。运用多个节点的计算能力来协同完成整个计算任务。

  • 存储器

    分布式系统中,我们需要把承担存储功能的多个节点组织在一起, 组成一个整体的存储器;比如数据库、redis(key-value 存储) 。

七、分布式系统的难点

  毫无疑问,分布式系统对于集中式系统而言,在实现上会更加 复杂。分布式系统将会是更难理解、设计、构建 和管理的,同 时意味着应用程序的根源问题更难发现。

  • 三态

    在集中式架构中,调用一个接口返回的结果只有两种, 成功或失败。但是在分布式架构中,会出现“超时”这个状态。

  • 分布式事务

    ​ 这其实是一个老生常谈的问题,我们都知道事务就是一系列操作的原子性保证,在单机的情况下,我们能够依靠本机的数据库连接和组件很轻易的做到事务控制,但在分布式架构下,业务原子性操作很可能是跨服务的,这样就会导致分布式事务。比如 A 、B 操作分别是在不同服务下的同一个事务内的操作,A 调用 B,如果A可以清楚的知道 B 是否成功提交从而控制自身提交还是回滚,但我们知道在分布式系统调用中会出现一个新状 态就是超时,就是 A 并无法知道 B 是成功还是失败,这个时候 A 是提交本地事务还是执行回滚呢?这其实是一个很难的问题,如果要强行保证事务一致性,可以采取分布式锁,但那样会增加系统复杂度而且会增大系统的开销,而且事务跨越的服务越多, 消耗的资源越大,性能越低,那么最好的解决方案就是避免分布式事务。 还有一种解决方案就是重试机制,但是重试如果不是查询接口, 久必然涉及到数据库的变更,如果第一次调用成功但是没返回成功结果,那调用方第二次调用对调用方来说依然是重试,但是此时对于被调用方来说是重复调用,例如 A 向 B 转账,A-100,B + 100,这样会导致 A 扣了 100,而 B 增加 200。这样的结果并不是我们期望的,因此需在要写入的接口做幂等设计(多次调用和单次调用是一样的效果)。通常可以设置一个唯一键,在写入的时候查询是否已经存在,避免重复写入。但是幂等设计的一 个前提就是服务高可用,否则无论怎么重试都不能调用返回一个明确的结果,那调用方会一直等待,虽然可以限制重试的次数, 但是这已经进入异常状态了,甚至到了极端情况还需要人肉补偿处理。其实根据 CAP 和 BASE 理论,不可能在高可用分布式情况下做到一致性,一般都是最终一致性保证。

  • 负载均衡

    ​ 为了达到服务高可用,每个服务至少是部署两台机器,因为互联网公司一般使用可靠性不是很高的普通机器, 长期运行宕机概率很高,所以两台机器能够大大降低服务不可用的可能性,而大型项目往往会采用十几台甚至上百台来部署一 个服务,这不仅是保证服务的高可用,更是为了提升服务的 QPS, 但是这样又带来一个问题,一个请求过来到底路由到哪台机器呢? 路由算法很多,有 DNS 路由,如果 session 在本机,还会根据用户 id 或则 cookie 等信息路由到固定的机器,当然现在应用服务器为了扩展的方便都会设计为无状态的,session 会保存到专有的 session 服务器,所以一般不会涉及到拿不到 session 问 题。那路由规则是随机获取么?这是一个方法,但是据我所知, 实际情况肯定比这个复杂得多,在一定范围内随机,但是在大范围也会分为很多个域,比如如果为了保证异地多活的多机房, 夸机房调用的开销太大,肯定会优先选择同机房的服务,这个 要参考具体的机器分布来考虑。

  • 一致性

    数据被分散或者复制到不同的机器上,如何保证各台主机之间的数据一致性将成为一个难点。

  • 故障的独立性

    ​ 分布式系统由多个节点组成,整个分布式系统完全出问题的概率是存在的,但是在实践中出现更多的是某个节点出问题,其他节点都没问题。这种情况下我们实现分布式系统时需要考虑得更加全面些。

八、总结

​  通过本文分布式系统的概述,我们就对分布式有了一个很直观的了解,里面涉及到的技术还是蛮多的,后面的文章中,我们一点点的来啃这些硬骨头。为我们的成长加油点赞吧~ 下篇博文我们来聊分布式架构的演进过程怎么样?评论区等你

简述

业界主流(O:Open Source): Thrift(O), Avro-RPC(O), Hessian(O), gRPC(O), Dubbo(O), HSF, Coral Service(亚马逊), DSF(华为),Zookeeper 

分布式服务框架包括: RPC组件, 配置化服务发布, 基于服务注册中心的订阅和发布, 服务治理

RPC 组件: 通信框架, 编码, 协议栈

涉及到的技术: Socket 通信, 多线程, 协议栈 -> Netty

关键字: 长连接, NIO(多路复用)

1.SOA架构和微服务架构的区别
首先SOA和微服务架构一个层面的东西,而对于ESB和微服务网关是一个层面的东西,一个谈到是架构风格和方法,一个谈的是实现工具或组件。

 1.SOA(Service Oriented Architecture)“面向服务的架构”:他是一种设计方法,其中包含多个服务, 服务之间通过相互依赖最终提供一系列的功能。一个服务 通常以独立的形式存在与操作系统进程中。各个服务之间 通过网络调用。

 2.微服务架构:其实和 SOA 架构类似,微服务是在 SOA 上做的升华,微服务架构强调的一个重点是“业务需要彻底的组件化和服务化”,原有的单个业务系统会拆分为多个可以独立开发、设计、运行的小应用。这些小应用之间通过服务完成交互和集成。

 微服务架构 = 80%的SOA服务架构思想 + 100%的组件化架构思想 + 80%的领域建模思想
 

3.SOA架构特点:

系统集成:站在系统的角度,解决企业系统间的通信问 题,把原先散乱、无规划的系统间的网状结构,梳理成 规整、可治理的系统间星形结构,这一步往往需要引入 一些产品,比如 ESB、以及技术规范、服务管理规范; 这一步解决的核心问题是【有序】

系统的服务化:站在功能的角度,把业务逻辑抽象成 可复用、可组装的服务,通过服务的编排实现业务的 快速再生,目的:把原先固有的业务功能转变为通用 的业务服务,实现业务逻辑的快速复用;这一步解决 的核心问题是【复用】

业务的服务化:站在企业的角度,把企业职能抽象成 可复用、可组装的服务;把原先职能化的企业架构转变为服务化的企业架构,进一步提升企业的对外服务能力;“前面两步都是从技术层面来解决系统调用、系统功能复用的问题”。第三步,则是以业务驱动把一个业务单元封装成一项服务。这一步解决的核心问题是【高效】

4.微服务架构特点:


1.通过服务实现组件化

开发者不再需要协调其它服务部署对本服务的影响。
2.按业务能力来划分服务和开发团队

开发者可以自由选择开发技术,提供 API 服务
3.去中心化

每个微服务有自己私有的数据库持久化业务数据
每个微服务只能访问自己的数据库,而不能访问其它服务的数据库
某些业务场景下,需要在一个事务中更新多个数据库。这种情况也不能直接访问其它微服务的数据库,而是通过对于微服务进行操作。
数据的去中心化,进一步降低了微服务之间的耦合度,不同服务可以采用不同的数据库技术(SQL、NoSQL等)。在复杂的业务场景下,如果包含多个微服务,通常在客户端或者中间层(网关)处理。


4.基础设施自动化(devops、自动化部署)

的Java EE部署架构,通过展现层打包WARs,业务层划分到JARs最后部署为EAR一个大包,而微服务则打开了这个黑盒子,把应用拆分成为一个一个的单个服务,应用Docker技术,不依赖任何服务器和数据模型,是一个全栈应用,可以通过自动化方式独立部署,每个服务运行在自己的进程中,通过轻量的通讯机制联系,经常是基于HTTP资源API,这些服务基于业务能力构建,能实现集中化管理(因为服务太多啦,不集中管理就无法DevOps啦)

5.主要区别:

功能

SOA

微服务

组件大小

大块业务逻辑

单独任务或小块业务逻辑

耦合

通常松耦合

总是松耦合

公司架构

任何类型

小型、专注于功能交叉团队

管理

着重中央管理

着重分散管理

目标

确保应用能够交互操作

执行新功能、快速拓展开发团队

你可能感兴趣的:(分布式,microsoft,数据库,系统架构)