蓝桥杯:分巧克力https://www.lanqiao.cn/problems/99/learning/
题目描述
输入描述
输入输出样例
运行限制
解题思路:
>暴力
>二分
AC代码(Java):
>暴力
>二分
儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是Hi×Wi 的方格组成的长方形。为了公平起见,
小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:
形状是正方形,边长是整数;
大小相同;
例如一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
第一行包含两个整数 N,K (1≤N,K≤10^5)。
以下 N 行每行包含两个整数 Hi,Wi (1≤Hi,Wi≤10^5)。
输入保证每位小朋友至少能获得一块 1x1 的巧克力。
输入
2 10
6 5
5 6
输出
2
先看数据范围,是10^5,一般我们1s处理10^7这样子是没有问题的,题目给的是2s,所以这道题可以暴力跑,同时边数也满足二段性(二分的前提),所以这道题暴力二分都能跑。
我们需要在拿数据的时候顺便记录最长的边数信息,因为我们可以根据最长的边数信息,切个题目给出的N个巧克力,然后统计能够切割出来的巧克力数量是否满足>=K,如果不满足就减少最长的边数信息,直到满足条件,然后结束循环。打印边数信息即可。
计算最长边数maxEdge能够在N个巧克力中切出多少块可以这样算:
int x = cookie[0] /maxEdge;
int y = cookie[1] / maxEdge;
ans += x*y; //x*y确保能切的数量
cookie[0]为第N个巧克力的长,cookie[1]为第N个巧克力的宽。
x*y就是我们以maxEdge*maxEdge能够将这个巧克力切出多少块
外层循环只需要枚举maxEdge,每次-1。
内层循环需要遍历N个巧克力,统计N个巧克力以maxEdge来切割一共能切除多少个巧克力。
如果以maxEdge能够切除大于K个小朋友的数量,那么我们结束循环,打印maxEdge即可。
要使用二分,我们的得判断数据是否满足二段性,所谓二段性,就是将数据分成两部分,一部分满足条件,另一部分不满足条件。
以maxEdge来作为基准,我们看看能否满足二段性的条件。
假设以maxEdge作为边数,能够切割出满足>=K,那么以该maxEdge,可以分成两段:
满足了二段性,所以直接以maxEdge为基准,直接进行二分即可。
import java.util.*;
// 1:无需package
// 2: 类名必须Main, 不可修改
public class Main {
static int N; //巧克力数量
static int K; //小朋友数量
static List list = new ArrayList<>(); //巧克力的信息(长宽)
static int maxEdge = 0; //记录最长的边,方便切巧克力的时候用
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
N = scan.nextInt();
K = scan.nextInt();
for(int i = 0;i1){
ans = 0;
//如果按照maxEdge来切,能切几块,够不够k个人分
for(int i = 0;i= K) {
System.out.println(maxEdge);
return ;
}
maxEdge--;
}
System.out.println(maxEdge);
}
}
import java.util.*;
// 1:无需package
// 2: 类名必须Main, 不可修改
public class demo {
static int N; //巧克力数量
static int K; //小朋友数量
static List list = new ArrayList<>(); //巧克力的信息(长宽)
static int maxEdge = 0; //记录最长的边,方便切巧克力的时候用
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
N = scan.nextInt();
K = scan.nextInt();
for(int i = 0;i= K) ans = Math.max(middle,ans);
if(number >= K) { //满足人数要求,尝试往右边找有没有更长的边符合条件
left = middle+1;
}else{ //不满足人数要求,往右边找
right = middle-1;
}
}
System.out.println(ans);
}
}