- Spring Cloud 与微服务学习总结(14)—— 云原生时代,如何从 Java 开发者转型微服务?
一杯甜酒
SpringCloud与微服务java云原生springcloud微服务微服务架构
前言根据维基百科定义,微服务不是整体应用程序中的一个层。相反,微服务是一个独立的业务功能,具有清晰的接口,并且可以通过内部组件实现分层架构。从战略角度来看,微服务架构基本上遵循“做一件事,就要做得好”的Unix哲学。为了应对传统单体架构的缺陷,微服务架构被企业广泛应用。然而,实践之前有很多问题都需要提前考虑清楚,比如Java背景的开发者是否更有优势?微服务、容器化、DevOps和CI/CD之间的关
- 百科词条创建:企业网络营销不可忽视的权威背书
百科创建老魏
百度
百科创建老魏:高质高效创建各类百科词条!在信息爆炸的互联网时代,企业官网可能被海量信息淹没,朋友圈推广容易被划为广告,短视频内容转瞬即逝...当用户真正想要了解一个品牌时,他们往往会在搜索框输入"XX公司怎么样"——这时,百度百科、抖音百科、搜狗百科等权威平台的词条展示,就是企业赢得用户信任的黄金名片。为什么说百科创建是网络推广的决胜环节?1、权威认证效应:百科词条自带"网络身份证"属性,87%的
- 使用 Python 爬虫抓取 Wikipedia 页面内容——完整实战教程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言jsonjava
引言随着互联网的普及和信息化时代的到来,获取知识变得异常方便。Wikipedia作为全球最大的开放式百科全书,几乎涵盖了所有领域的知识。每年都有数十亿次的访问量,成为全球获取信息的一个重要来源。对于数据分析、自然语言处理、学术研究等领域,Wikipedia页面内容往往是研究者和开发者的重要数据来源之一。本篇博客将带您通过Python爬虫,学习如何抓取Wikipedia页面中的内容,并处理提取的文本
- SpringBoot 集成 Caffeine(咖啡因)最优秀的本地缓存
Listening_Wind
Java缓存javaspringbootspring
SpringBoot集成Caffeine(咖啡因)最优秀的本地缓存本地缓存为什么用Caffeine做本地缓存SpringBoot2.0+如何集成Caffeine引入依赖开启缓存容器配置驱逐策略开发使用参考博客本地缓存百度百科:本地缓存是指将客户机本地的物理内存划分出一部分空间用来缓冲客户机回写到服务器的数据,因其在回写上的突出贡献,因此本地缓存一般称为本地回写。本地缓存概念首次出现是在无盘领域,作
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 大位数
皮小猪的时光
面试/笔试题大位数
大位数问题:int的表示范围是-2147483648~2147483647。当两个正数相加的结果大于2147483647时,将会造成越界,而得到负数的结果。同样两个大位数相乘,也会导致越界的危险。为此,处理大位数问题时,普通的做法将无法满足需求。解决方法主要有两种:利用现有的大数库。如:GNUMP等。可参考维基百科上的介绍-GNU多重精度运算库自己动手写。大位数加法思路:按照小学时算算术题的方法,
- 如何屏蔽搜狗输入法广告
啊宝儿姐
小偏方去广告
每天一开机,不一会儿就弹出一个广告弹窗,太烦了。好了,用这么一个方法,轻松kill掉这些广告插件:如图第一步:第二步:第三步:设置该文件的权限,禁止被程序删除,修改最后不要忘了点确定,保存你的设置!——小时候梦想仗剑走天涯,后来,我做了一名程序员
- 深度学习笔记——神经网络
肆——
深度学习深度学习笔记神经网络人工智能python
本文为在拓尔思智能举办的训练营中学习内容的总结,部分内容摘自百度百科个人在这里推荐一个好用的软件,Trae,主要是免费。人工神经元是人工神经网络的基本单元。模拟生物神经元,人工神经元有1个或者多个输入(模拟多个树突或者多个神经元向该神经元传递神经冲动);对输入进行加权求和(模拟细胞体将神经信号进行积累和树突强度不同);对输入之和使用激活函数计算活性值(模拟细胞体产生兴奋或者抑制);输出活性值并传递
- 利用R语言irr包计算ICC值(组内相关系数)
mlhylzqwxli
r语言
ICC值是一个较为陌生的概念,在统计学中应用较多,引用百度百科的介绍:组内相关系数(ICC)是衡量和评价观察者间信度(inter-observerreliability)和复测信度(test-retestreliability)的信度系数(reliabilitycoefficient)指标之一。它最先由Bartko于1966年用于测量和评价信度的大小。ICC等于个体的变异度除以总的变异度,故其值介
- Manus 和 DeepSeek 一个思考一个执行
ljaizr
深度学习机器学习人工智能
Manus和DeepSeek是两款定位截然不同的AI工具,核心差异在于**“思考”与“执行”的分工**,可以类比为人类社会中的“大脑”与“手脚”。以下是具体区别:1.核心定位:军师vs特种兵DeepSeek(深度求索)特点:专注于知识推理与内容生成,擅长分析复杂问题、输出高精度文本(如法律文书、学术论文)。定位:像“智库”或“百科全书”,提供专业建议但需用户自行执行后续操作。适用场景:需要深度思考
- Dolma:开源大规模语言模型预训练数据集与工具包
2401_87458718
语言模型人工智能自然语言处理
Dolma:开源大规模语言模型预训练数据集与工具包Dolma是由Allen人工智能研究所(AI2)开发的一个开源项目,旨在为大规模语言模型的预训练提供高质量的数据集和强大的数据处理工具。Dolma包含两个主要组成部分:Dolma数据集和Dolma工具包。Dolma数据集Dolma数据集是一个包含3万亿个token的开放数据集,涵盖了多样化的内容来源,包括网页内容、学术出版物、代码、书籍和百科全书材
- Elasticsearch平台介绍
yzhujue
elasticsearch
1简介Elasticsearch是一个实时分布式搜索和分析引擎。它能以很高的速度处理数据。它用于全文搜索、结构化搜索、分析以及将这三者混合使用。Ø维基百科使用Elasticsearch提供全文搜索并高亮关键字,以及输入实时搜索(search-as-you-type)和搜索纠错(did-you-mean)等搜索建议功能。Ø英国卫报使用Elasticsearch结合用户日志和社交网络数据提供给他们的编
- 浅谈C语言位段
平生不喜凡桃李
C语言学习c语言
1、位段的定义百度百科中是这样解释位段的:位段,C语言允许在一个结构体中以位为单位来指定其成员所占内存长度,这种以位为单位的成员称为“位段”或称“位域”(bitfield)。利用位段能够用较少的位数存储数据。以下,我们均在VS2022的编译环境下去探讨和理解位段2、位段的声明和使用A、位段的声明位段是与结构体相结合的,只有在结构体中才能使用位段,位段使用的根本目的是为了节省不必要消耗的内存空间。这
- 百度百科更新!树莓集团宜宾项目:深远影响与未来发展趋势解读
树莓集团
人工智能媒体大数据科技百度
最近,百度百科对树莓集团宜宾项目进行了更新,这一小小的举动,却引发了人们对树莓集团宜宾项目的深入思考。树莓集团宜宾项目的落地,对宜宾乃至整个川南地区的经济发展都产生了深远的影响。一方面,它带动了当地数字产业的发展,吸引了大量的数字企业和人才入驻,为当地创造了更多的就业机会和经济增长点。另一方面,它也促进了数字技术与传统产业的融合,推动了宜宾产业结构的优化升级。从未来发展趋势来看,树莓集团宜宾项目有
- 树莓百度百科再更新!又一项目落子宜宾
树莓集团
百度大数据人工智能媒体科技
树莓百度百科的再次更新,传递出树莓集团在宜宾发展的又一重要消息:又一项目成功落子宜宾。这一更新不仅反映了树莓集团的动态发展,也彰显了其在宜宾持续深耕的决心。此次新落地宜宾的项目,是树莓集团基于对宜宾市场与产业发展趋势的深入研究而做出的决策。该项目聚焦于数字经济与实体经济的融合发展,计划打造一个集数字技术研发、应用与传统产业升级服务于一体的综合性平台。在数字技术研发方面,树莓集团将依托宜宾当地的高校
- java从入门到入土图_Java从入门到入土day08
果舒
java从入门到入土图
好家伙,这个作者竟然妄图一天就把面向对象的两个特征说了。他可真是自不量力啊,作者心中OS:学习真累,赶快写完去打游戏真香。正文分割线一、抽象1、抽象的定义:抽象,字面意思。很抽象,很多人都不懂的东西就叫抽象。那么放在Java中是什么样的体现呢?百度百科的答案是:抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征的过程。具体地说,抽象就是人们在实践的基础上,对于丰富的感性材料通过去
- 【线代】《线性代数的几何意义》——摘录笔记兼小结(五)
jingyu404
线性代数读书及杂言
内容:大多是摘录原书,概括、理解是自己总结的。目的:供自己温习使用,有摘录不全或总结不精的部分。他人学习,仅供参考。目录附录1.线性代数简史2.怎样学习线性代数丘维声小结笔记链接汇总附录1.线性代数简史书上说摘自百科《线性代数》,所以就简略做个摘录吧。1.1向量,物理学。Bc350,亚里士多德:“力可以构成向量”,平行四边形法则。牛顿,最先使用有向线段表示。18c,威塞尔,用坐标平面的点表示复数,
- 自动化爬取json_爬虫解决方案之爬取“搜狗引擎”
公子大白0m0
自动化爬取json
主题.jpg1.爬取的背景为甚我们会提到“搜狗引擎爬虫呢”,一切根源来自于最近需要爬取领英的会员资料,我们可以通过人名|领英的方式具体的搜索以查询结果,这只是爬取领英的其中一个方法,具体的方法我们之后会讲,大家可以期待一下哦!,好了,讲回正题,我们该如何爬取“搜狗引擎”呢,我们先去首页看看搜狗首页.png我们可以看到每个链接的右下角都会有对应的时间和快照,这个是什么意思呢,因为我们爬取领英时需要登
- 树莓百度百科新动态:宜宾项目的深远影响与意义
树莓集团
百度人工智能媒体大数据科技
在树莓集团的百度百科词条中,宜宾项目的新动态备受关注,其深远影响与意义不容忽视。从产业发展角度来看,宜宾项目带动了当地数字产业的集聚。树莓集团在宜宾建设的多个数字产业园区,吸引了众多上下游企业入驻。形成了从芯片研发、软件开发到系统集成的完整产业链条。这种产业集聚效应不仅提高了产业的协同效率,还降低了企业的运营成本。例如,园区内的一家芯片制造企业与软件企业紧密合作,实现了芯片与软件的深度适配,提升了
- 硬核 | 学习 Linux/C/C++ 必备!
我不是程序员~~~~
C&C++
大家好,我是亮哥!自从做公众号以来,我的公众号关注列表就急速上涨。刚看了一下目前总共几百个了。我从中挑选了几个Linux/C/C++方向上质量不错的号,在此推荐给大家。开发内功修炼公众号「开发内功修炼」号主飞哥有腾讯、搜狗等厂十余年工作经验。他在公众号上持续输出对网络、内存、磁盘的深刻的理解。他还自己写了一本硬核的pdf电子书《理解了实现再谈网络性能》,关注公众号后回复“内功”即可领取。图解|深入
- 【算法 | Python】高斯消元法
weixin_43964993
算法python算法pythonnumpy
程序来源:GaussianEliminationArithmeticAnalysis原理说明源代码代码说明原理说明高斯消元法(GaussElimination)【超详解&模板】高斯消元法-百度百科源代码"""Gaussianeliminationmethodforsolvingasystemoflinearequations.Gaussianelimination-https://en.wikip
- GO和kEGG富集分析
begei
面试学习路线阿里巴巴golang开发语言后端
文章目录前言一、GO和KEGG1.**GO富集分析:**2.KEGG富集分析:二、使用步骤1.数据处理2.GO分析3.KEGG富集总结前言GO(GeneOntology,基因本体)富集和KEGG(KyotoEncyclopediaofGenesandGenomes,京都基因与基因组百科全书)富集分析能够从不同角度揭示基因的功能和生物学意义一、GO和KEGG1.GO富集分析:说明基因在分子功能(Mo
- 浅谈边缘计算
@LDL
其他数据挖掘自动驾驶区块链
一.概念定义(1)维基百科对边缘计算的定义如下:边缘计算是一种优化云计算系统的方法。在边缘执行分析和知识生成减少受控系统和数据中心之间的通信带宽。(2)OpenStack基金会对边缘计算的定义如下:边缘计算是为应用开发者和服务提供商在网络的边缘侧提供云服务和IT环境服务。边缘计算的目标是在靠近数据输入或用户的地方提供计算、存储和网络带宽。(3)2015年,卡内基梅隆大学、华为、英特尔等发起成立的O
- 当你给大模型一段输入之后,它是怎么得到答案的
牛不才
000-大模型chatgptAIGC文心一言gptllamaagiprompt
1.先把问题“嚼碎”(输入处理)比如你问:“太阳为什么东升西落?”切分知识点:模型会把这句话拆解成词汇单元(比如:“太阳”“为什么”“东”“升”“西”“落”),就像你背单词时先拆解句子。2.动用毕生所学(模型“回想”知识)大模型并不是真有一个“数据库”,而是依靠训练时海量的知识联结:(类似人类的经验积累)内在规律:从上学过的教材、论文、百科中记住过“地球自转导致太阳视运动”这个常识。猜测套路:统计
- python 单例模式内存泄露_Python 学习笔记 - 面向对象(单例模式和异常处理)
小红姐产房故事
python单例模式内存泄露
单例模式,也叫单子模式,是一种常用的软件设计模式。在应用这个模式时,单例对象的类必须保证只有一个实例存在。许多时候整个系统只需要拥有一个全局对象,这样有利于我们协调系统整体的行为。--以上来自维基百科一个简单的方式是通过一个静态字段进行判断。classFoo:instance=Nonedef__init__(self,name):self.name=name@classmethoddefget_i
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- R语言安装生物信息数据库包
Bio Coder
R语言r语言数据库
R语言安装生物信息数据库包在生物信息学领域,R语言是重要的数据分析工具。今天,我们就来聊聊在R语言环境下,安装生物信息数据库包(org.*.*.db)的步骤。为什么要安装org.*.*.db系列包生物信息学分析中,我们常处理基因相关数据,比如基因功能注释、位置、参与的生物学通路等。org.*.*.db系列包就像基因百科全书,提供不同物种的基因注释信息。比如研究人类基因时,能帮我们快速获取基因别名、
- leetcode:236. 二叉树的最近公共祖先
uncle_ll
编程练习-Leetcodeleetcode二叉树公共父节点算法训练递归
236.二叉树的最近公共祖先来源:力扣(LeetCode)链接:https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-tree/给定一个二叉树,找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树T的两个节点p、q,最近公共祖先表示为一个节点x,满足x是p、q的祖先且x的深度尽可能大(一个节点也
- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- 怎么使用DeepSeek?DeepSeek使用教程
轻创思维
网络
1.简介DeepSeek是一款基于人工智能技术的智能搜索引擎和信息检索工具。它能够通过自然语言处理技术理解用户的查询需求,并提供精准、全面的搜索结果。无论您是想查找信息、解答问题还是进行创意写作,DeepSeek都能为您提供高效的支持。2.主要功能智能搜索:支持自然语言输入,快速获取精准结果。多语言支持:支持中文、英文及其他多种语言的输入和输出。知识库覆盖:整合海量互联网信息,覆盖百科、新闻、学术
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。