Flink高手之路2-Flink集群的搭建

文章目录

  • Flink高手之路2-Flink集群的搭建
    • 一、Flink的安装模式
      • 1.本地local模式
      • 2.独立集群模式standalone
      • 3.高可用的独立集群模式standalone HA
      • 4.基于yarn模式Flink on yarn
    • 二、基础环境
    • 三、Flink的local模式安装
      • 1. 下载安装包
      • 2. 上传服务器
      • 3.解压
      • 4. 配置环境变量
      • 5. 使环境变量起作用
      • 6.测试显示版本
      • 7.测试scala shell交互命令行(可跳过)
        • 1)安装一下 Flink 1.12 版本
        • 2)启动命令行
        • 3)web ui查看
        • 4)scala命令行示例-单词计数(批处理)
        • 5)scala命令行示例2-窗口计数(流处理)
        • 6)退出命令行
      • 8.local模式测试
      • 9.查看Flink的web ui
      • 10.local集群运行测试任务-单词计数
        • 1)先准备好数据文件
        • 2)找到单词计数的jar包
        • 3)提交任务到集群上运行
        • 4)web ui任务执行过程查看
      • 11.Flink本地(local)模式任务执行的原理
    • 四、Flink的独立集群Standalone模式的安装及测试
      • 1.集群规划
      • 2.下载安装包并上传服务器解压
      • 3.配置环境变量并使环境变量起作用
      • 4.修改Flink的配置文件
        • 1)修改yaml或者yml文件的注意事项
        • 2)修改flink-conf.yaml
        • 3)master
        • 4)workers
      • 5.分发文件
        • 1)分发flink
        • 2)分发/etc/profile
        • 3)使得配置文件起作用
      • 6.启动Flink集群,并查看相关进程
      • 7.web ui查看
      • 8.集群测试
        • 1)提交单词计数的任务,使用默认的参数
        • 2)提交单词计数的任务,使用自定义参数
        • 3)添加hadoop classpath配置
        • 4)分发并激活环境变量
        • 5)下载flink和hadoop的连接工具,上传到flink的lib文件夹
        • 6)重新启动flink集群
        • 7)重新提交单词计数的任务,使用自定义参数
      • 9.工作原理
    • 五、独立集群高可用Standalone-HA搭建
      • 1.集群规划
      • 2.修改flink的配置文件
        • 1)修改flink-conf.yaml文件
        • 2)修改masters文件
        • 3)不用修改workers文件
      • 3.同步配置文件
      • 4.修改hadoop002上的flink-conf.yaml文件
      • 5.启动集群
        • 1)启动zookeeper
        • 2)启动hdfs
        • 3)启动yarn
        • 4)启动flink集群
      • 6.flink的web ui查看
      • 7.集群的测试
        • 1)单词计数使用默认的参数
        • 2)杀掉hadoop001的master进程
        • 3)再次提交单词计数的任务(使用默认参数)
        • 4)接着杀掉hadoop002的master
        • 5)单词计数,使用自定义参数
      • 8.工作原理
    • 六、Flink on Yarn模式集群搭建及测试
      • 1.为什么要使用Flink on Yarn
      • 2.集群规划
      • 3.修改yarn的配置
      • 4.启动相关的服务
      • 5.flink on yarn提交任务的模式
      • 6.Session模式提交任务
        • 1)开启会话(session)
        • 2)提交任务-单词计数
        • 3)再次提交任务
      • 7.关闭yarn-session
      • 8.Per-Job模式提交任务
        • 1)语法
        • 2)提交任务
        • 3)查看yarn的web ui
        • 4)再次提交任务
        • 5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭
      • 9.flink任务提交参数总结

Flink高手之路2-Flink集群的搭建_第1张图片

Flink高手之路2-Flink集群的搭建

一、Flink的安装模式

1.本地local模式

本地单机模式,一般用于测试环境是否搭建成功,很少使用

2.独立集群模式standalone

Flink自带集群,开发测试使用

3.高可用的独立集群模式standalone HA

Flink自带集群,用于开发测试

4.基于yarn模式Flink on yarn

计算资源统一交给hadoop的yarn进行管理,用于生产环境

二、基础环境

  • 虚拟机
  • jdk1.8
  • ssh免密登录

三、Flink的local模式安装

1. 下载安装包

Flink高手之路2-Flink集群的搭建_第2张图片

点击:

Flink高手之路2-Flink集群的搭建_第3张图片

点击下载:

Flink高手之路2-Flink集群的搭建_第4张图片

2. 上传服务器

找到安装包,并上传:

Flink高手之路2-Flink集群的搭建_第5张图片

上传成功:

Flink高手之路2-Flink集群的搭建_第6张图片

3.解压

tar xzvf flink-1.16.1-bin-scala_2.12.tgz -C /export/servers/

Flink高手之路2-Flink集群的搭建_第7张图片

进入 Servers 目录下:

Flink高手之路2-Flink集群的搭建_第8张图片

进入 Flink 目录下:

Flink高手之路2-Flink集群的搭建_第9张图片

进入 bin 目录下:

Flink高手之路2-Flink集群的搭建_第10张图片

4. 配置环境变量

image-20230223102504529

5. 使环境变量起作用

image-20230223102117785

6.测试显示版本

Flink高手之路2-Flink集群的搭建_第11张图片

7.测试scala shell交互命令行(可跳过)

需要flink的版本是1.12及以下的版本,在高版本中 scala shell 被舍去了。

1)安装一下 Flink 1.12 版本

上传文件

Flink高手之路2-Flink集群的搭建_第12张图片

上传成功:

Flink高手之路2-Flink集群的搭建_第13张图片

解压

image-20230302110812013

Flink高手之路2-Flink集群的搭建_第14张图片

2)启动命令行

启动 shell

bin/start-scala-shell.sh local

Flink高手之路2-Flink集群的搭建_第15张图片

Flink高手之路2-Flink集群的搭建_第16张图片

3)web ui查看

Flink高手之路2-Flink集群的搭建_第17张图片

4)scala命令行示例-单词计数(批处理)

  • 准备好数据文件

Flink高手之路2-Flink集群的搭建_第18张图片

benv.readTextFile("/root/a.txt").flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1).print()

image-20230302151135163

5)scala命令行示例2-窗口计数(流处理)

Flink高手之路2-Flink集群的搭建_第19张图片

6)退出命令行

输入 :quit 或者 Ctrl + d

image-20230302151805860

8.local模式测试

启动集群并查看进程

image-20230224205107287

9.查看Flink的web ui

启动失败,需要修改/etc/hosts文件,添加localhost的定义

Flink高手之路2-Flink集群的搭建_第20张图片

若直接添加 192.168.92.128 localhost在启动 Hbase时会出现如下错误

Flink高手之路2-Flink集群的搭建_第21张图片

修改完成后,启动成功:
Flink高手之路2-Flink集群的搭建_第22张图片

10.local集群运行测试任务-单词计数

1)先准备好数据文件

Flink高手之路2-Flink集群的搭建_第23张图片

2)找到单词计数的jar包

Flink高手之路2-Flink集群的搭建_第24张图片

3)提交任务到集群上运行

出现错误:org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: java.util.concurrent.ExecutionException: org.apache.flink.runtime.client.JobSubmissionException: Failed to submit JobGraph.

原因:没有启动Flink集群

启动集群:

image-20230302153651124

运行成功:

Flink高手之路2-Flink集群的搭建_第25张图片

执行成功后,在/root目录下出现 output 目录

Flink高手之路2-Flink集群的搭建_第26张图片

运行结果

Flink高手之路2-Flink集群的搭建_第27张图片

4)web ui任务执行过程查看

Flink高手之路2-Flink集群的搭建_第28张图片

点击任务

Flink高手之路2-Flink集群的搭建_第29张图片

11.Flink本地(local)模式任务执行的原理

Flink程序提交任务到 JobClient ,JobClient 提交任务到 JobManager【Master】,JobManager 分发任务给TaskManager,TaskManager执行任务,执行任务后发送状态给 JobManager,JobManager 将结果返回到 JobClient 。

Flink高手之路2-Flink集群的搭建_第30张图片

四、Flink的独立集群Standalone模式的安装及测试

1.集群规划

服务器 JobManager TaskManager
hadoop001
hadoop002
hadoop003

2.下载安装包并上传服务器解压

同上

3.配置环境变量并使环境变量起作用

同上

4.修改Flink的配置文件

Flink高手之路2-Flink集群的搭建_第31张图片

1)修改yaml或者yml文件的注意事项

  • 不同的等级用冒号隔开,同时缩进格式
  • 次等级的前面是空格,不能使用制表符
  • 冒号之后如果有值,那么冒号与值之间用至少一个空格分隔,不能紧贴在一起

Flink高手之路2-Flink集群的搭建_第32张图片

2)修改flink-conf.yaml

  • flink1.16版本的配置
################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################


#==============================================================================
# Common
#==============================================================================

# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host  parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.

jobmanager.rpc.address: hadoop001

# The RPC port where the JobManager is reachable.

jobmanager.rpc.port: 6123

# The host interface the JobManager will bind to. By default, this is localhost, and will prevent
# the JobManager from communicating outside the machine/container it is running on.
# On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0.
# On Kubernetes this setting will be ignored, defaulting to 0.0.0.0.
#
# To enable this, set the bind-host address to one that has access to an outside facing network
# interface, such as 0.0.0.0.

jobmanager.bind-host: 0.0.0.0


# The total process memory size for the JobManager.
#
# Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead.

jobmanager.memory.process.size: 1600m

# The host interface the TaskManager will bind to. By default, this is localhost, and will prevent
# the TaskManager from communicating outside the machine/container it is running on.
# On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0.
# On Kubernetes this setting will be ignored, defaulting to 0.0.0.0.
#
# To enable this, set the bind-host address to one that has access to an outside facing network
# interface, such as 0.0.0.0.

taskmanager.bind-host: 0.0.0.0

# The address of the host on which the TaskManager runs and can be reached by the JobManager and
# other TaskManagers. If not specified, the TaskManager will try different strategies to identify
# the address.
#
# Note this address needs to be reachable by the JobManager and forward traffic to one of
# the interfaces the TaskManager is bound to (see 'taskmanager.bind-host').
#
# Note also that unless all TaskManagers are running on the same machine, this address needs to be
# configured separately for each TaskManager.

taskmanager.host: hadoop001

# The total process memory size for the TaskManager.
#
# Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead.

taskmanager.memory.process.size: 1728m

# To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'.
# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.
#
# taskmanager.memory.flink.size: 1280m

# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.

taskmanager.numberOfTaskSlots: 2

# The parallelism used for programs that did not specify and other parallelism.

parallelism.default: 2

# The default file system scheme and authority.
# 
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme

#==============================================================================
# High Availability
#==============================================================================

# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
#
# high-availability: zookeeper

# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
# 
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...) 
#
# high-availability.storageDir: hdfs:///flink/ha/

# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
# high-availability.zookeeper.quorum: localhost:2181


# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
# high-availability.zookeeper.client.acl: open

#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================

# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled. Checkpointing is enabled when execution.checkpointing.interval > 0.
#
# Execution checkpointing related parameters. Please refer to CheckpointConfig and ExecutionCheckpointingOptions for more details.
#
# execution.checkpointing.interval: 3min
# execution.checkpointing.externalized-checkpoint-retention: [DELETE_ON_CANCELLATION, RETAIN_ON_CANCELLATION]
# execution.checkpointing.max-concurrent-checkpoints: 1
# execution.checkpointing.min-pause: 0
# execution.checkpointing.mode: [EXACTLY_ONCE, AT_LEAST_ONCE]
# execution.checkpointing.timeout: 10min
# execution.checkpointing.tolerable-failed-checkpoints: 0
# execution.checkpointing.unaligned: false
#
# Supported backends are 'hashmap', 'rocksdb', or the
# .
#
# state.backend: hashmap

# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints

# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints

# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend). 
#
# state.backend.incremental: false

# The failover strategy, i.e., how the job computation recovers from task failures.
# Only restart tasks that may have been affected by the task failure, which typically includes
# downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.

jobmanager.execution.failover-strategy: region

#==============================================================================
# Rest & web frontend
#==============================================================================

# The port to which the REST client connects to. If rest.bind-port has
# not been specified, then the server will bind to this port as well.
#
rest.port: 8081

# The address to which the REST client will connect to
#
rest.address: hadoop001

# Port range for the REST and web server to bind to.
#
#rest.bind-port: 8080-8090

# The address that the REST & web server binds to
# By default, this is localhost, which prevents the REST & web server from
# being able to communicate outside of the machine/container it is running on.
#
# To enable this, set the bind address to one that has access to outside-facing
# network interface, such as 0.0.0.0.
#
rest.bind-address: 0.0.0.0

# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.

#web.submit.enable: false

# Flag to specify whether job cancellation is enabled from the web-based
# runtime monitor. Uncomment to disable.

#web.cancel.enable: false

#==============================================================================
# Advanced
#==============================================================================

# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
#     /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp

# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first

# The amount of memory going to the network stack. These numbers usually need 
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, the default max is 1GB.
# 
# taskmanager.memory.network.fraction: 0.1
# taskmanager.memory.network.min: 64mb
# taskmanager.memory.network.max: 1gb

#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================

# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL

# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.

# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user

# The configuration below defines which JAAS login contexts

# security.kerberos.login.contexts: Client,KafkaClient

#==============================================================================
# ZK Security Configuration
#==============================================================================

# Below configurations are applicable if ZK ensemble is configured for security

# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper

# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client

#==============================================================================
# HistoryServer
#==============================================================================

# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)

# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/

# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0

# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082

# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/

# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000


  • Flink1.12版本的配置

Flink高手之路2-Flink集群的搭建_第33张图片

3)master

Flink高手之路2-Flink集群的搭建_第34张图片

4)workers

Flink高手之路2-Flink集群的搭建_第35张图片

5.分发文件

1)分发flink

Flink高手之路2-Flink集群的搭建_第36张图片

Flink高手之路2-Flink集群的搭建_第37张图片

2)分发/etc/profile

image-20230309190547242

3)使得配置文件起作用

Flink高手之路2-Flink集群的搭建_第38张图片

6.启动Flink集群,并查看相关进程

Flink高手之路2-Flink集群的搭建_第39张图片

image-20230309190824923

image-20230309190839370

7.web ui查看

Flink高手之路2-Flink集群的搭建_第40张图片

8.集群测试

1)提交单词计数的任务,使用默认的参数

Flink高手之路2-Flink集群的搭建_第41张图片

Flink高手之路2-Flink集群的搭建_第42张图片

Flink高手之路2-Flink集群的搭建_第43张图片

2)提交单词计数的任务,使用自定义参数

准备好数据文件

image-20230309191818494

上传hdfs

首先要确保 hdfs 集群已经启动

Flink高手之路2-Flink集群的搭建_第44张图片

发现我们以前已经上传过了

Flink高手之路2-Flink集群的搭建_第45张图片

提交命令

flink run ./WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output

Flink高手之路2-Flink集群的搭建_第46张图片

出现错误:

org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Hadoop is not in the classpath/dependencies.

这个错误需要把flink-1.16.1与hadoop3进行集成。

Flink高手之路2-Flink集群的搭建_第47张图片

3)添加hadoop classpath配置

export HADOOP_CLASSPATH=`hadoop classpath`

Flink高手之路2-Flink集群的搭建_第48张图片

4)分发并激活环境变量

image-20230309204830807

image-20230309204852268

5)下载flink和hadoop的连接工具,上传到flink的lib文件夹

去maven中央仓库下载如下jar包并上传到 flink/lib文件夹中

https://mvnrepository.com/artifact/commons-cli/commons-cli/1.5.0

https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-3-uber

这是为了集成hadoop,而shaded依赖已经解决了相关的jar包冲突等问题,该jar包属于第三方jar包,官网有链接,但是并没有hadoop 3.X的,这个直接在maven中央仓库搜索倒是可以搜得到。

Flink高手之路2-Flink集群的搭建_第49张图片

上传 jar 包到lib目录下

Flink高手之路2-Flink集群的搭建_第50张图片

分发 lib 目录到hadoop002和hadoop003

Flink高手之路2-Flink集群的搭建_第51张图片

6)重新启动flink集群

Flink高手之路2-Flink集群的搭建_第52张图片

7)重新提交单词计数的任务,使用自定义参数

Flink高手之路2-Flink集群的搭建_第53张图片

查看 flink web ui

Flink高手之路2-Flink集群的搭建_第54张图片

查看 hdfs web UI

Flink高手之路2-Flink集群的搭建_第55张图片

点击一个文件查看

Flink高手之路2-Flink集群的搭建_第56张图片

9.工作原理

Flink高手之路2-Flink集群的搭建_第57张图片

五、独立集群高可用Standalone-HA搭建

1.集群规划

服务器 JobManager TaskManager
hadoop001 y y
hadoop002 y y
hadoop003 n y

2.修改flink的配置文件

1)修改flink-conf.yaml文件

Flink高手之路2-Flink集群的搭建_第58张图片

Flink高手之路2-Flink集群的搭建_第59张图片

2)修改masters文件

image-20230318150958055

3)不用修改workers文件

3.同步配置文件

分发到Hadoop002:

image-20230318151234175

分发到Hadoop003:

image-20230318151309661

4.修改hadoop002上的flink-conf.yaml文件

Flink高手之路2-Flink集群的搭建_第60张图片

Flink高手之路2-Flink集群的搭建_第61张图片

注意:12.7版本下只需要修改一处就可以了,16.1需要修改3处,否则会提交任务失败。

5.启动集群

1)启动zookeeper

启动ZooKeeper,查看ZooKeeper的状态:

Flink高手之路2-Flink集群的搭建_第62张图片

Flink高手之路2-Flink集群的搭建_第63张图片

Flink高手之路2-Flink集群的搭建_第64张图片

2)启动hdfs

3)启动yarn

Flink高手之路2-Flink集群的搭建_第65张图片

4)启动flink集群

Flink高手之路2-Flink集群的搭建_第66张图片

Flink高手之路2-Flink集群的搭建_第67张图片

image-20230318152342210

6.flink的web ui查看

Flink高手之路2-Flink集群的搭建_第68张图片

Flink高手之路2-Flink集群的搭建_第69张图片

7.集群的测试

1)单词计数使用默认的参数

Flink高手之路2-Flink集群的搭建_第70张图片

2)杀掉hadoop001的master进程

Flink高手之路2-Flink集群的搭建_第71张图片

此时查看web ui,hadoop001无法访问,hadoop002还可以继续访问
Flink高手之路2-Flink集群的搭建_第72张图片

Flink高手之路2-Flink集群的搭建_第73张图片

3)再次提交单词计数的任务(使用默认参数)

Flink高手之路2-Flink集群的搭建_第74张图片

集群能正常工作,说明高可用在起作用

4)接着杀掉hadoop002的master

Flink高手之路2-Flink集群的搭建_第75张图片

此时,node2的web ui也无法访问
在这里插入图片描述

再次提交任务,出现错误,无法运行任务

Flink高手之路2-Flink集群的搭建_第76张图片

5)单词计数,使用自定义参数

重启集群

Flink高手之路2-Flink集群的搭建_第77张图片

删除hdfs上以前创建的output文件夹

在这里插入图片描述

提交任务,使用之前上传的数据

flink run examples/batch/WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output

Flink高手之路2-Flink集群的搭建_第78张图片

查看结果

Flink高手之路2-Flink集群的搭建_第79张图片

杀掉hadoop001的master进程,并再次提交任务

Flink高手之路2-Flink集群的搭建_第80张图片

Flink高手之路2-Flink集群的搭建_第81张图片

再次删除hdfs上之前创建的output文件夹

在这里插入图片描述

再次提交任务,可以正常运行并查看结果,说明高可用搭建成功

Flink高手之路2-Flink集群的搭建_第82张图片

Flink高手之路2-Flink集群的搭建_第83张图片

8.工作原理

Flink高手之路2-Flink集群的搭建_第84张图片

六、Flink on Yarn模式集群搭建及测试

1.为什么要使用Flink on Yarn

  • yarn管理资源,可以按需使用,提高整个集群的资源利用率
  • 任务有优先级,可以根据优先级合理的安排任务运行作用
  • 基于yarn的调度系统,能够自动化的处理各个角色的容错

2.集群规划

跟standalone保持一致

服务器 JobManager TaskManager
hadoop001 y y
hadoop002 y y
hadoop003 n y

3.修改yarn的配置

Flink高手之路2-Flink集群的搭建_第85张图片

4.启动相关的服务

  • zookeeper
  • hdfs
  • yarn
  • flink
  • historyserver(可选)

Flink高手之路2-Flink集群的搭建_第86张图片

启动历史服务器

image-20230318163202548

5.flink on yarn提交任务的模式

有两种模式

  • session模式 :会话模式
  • per-job模式:每任务模式

Flink高手之路2-Flink集群的搭建_第87张图片

6.Session模式提交任务

1)开启会话(session)

Flink高手之路2-Flink集群的搭建_第88张图片

语法:

yarn-session.sh -n 2 -tm 800 -s 1 -d

说明:

  • n:表示申请容器的数量,也就是worker的数量,也就是cpu的核心数
  • tm:表示给个worker(TaskManager)的内存大小
  • s:表示每个worker的slot的数量
  • d:表示后台运行

启动一个会话

yarn-session.sh -n 2 -tm 800 -s 1 -d

Flink高手之路2-Flink集群的搭建_第89张图片

此时的进程

Flink高手之路2-Flink集群的搭建_第90张图片

web ui的查看

Flink高手之路2-Flink集群的搭建_第91张图片

Flink高手之路2-Flink集群的搭建_第92张图片

Flink高手之路2-Flink集群的搭建_第93张图片

Flink高手之路2-Flink集群的搭建_第94张图片
Flink高手之路2-Flink集群的搭建_第95张图片

2)提交任务-单词计数

使用的默认的参数,提交任务
Flink高手之路2-Flink集群的搭建_第96张图片

查看yarn的web ui

Flink高手之路2-Flink集群的搭建_第97张图片

Flink高手之路2-Flink集群的搭建_第98张图片

Flink高手之路2-Flink集群的搭建_第99张图片

3)再次提交任务

Flink高手之路2-Flink集群的搭建_第100张图片

再次查看yarn的web ui

Flink高手之路2-Flink集群的搭建_第101张图片

7.关闭yarn-session

Flink高手之路2-Flink集群的搭建_第102张图片

关闭会话
Flink高手之路2-Flink集群的搭建_第103张图片

查看进程
Flink高手之路2-Flink集群的搭建_第104张图片

查看yarn的web ui

Flink高手之路2-Flink集群的搭建_第105张图片

8.Per-Job模式提交任务

1)语法

flink run -m yarn-cluster -yjm 1024 -ytm 1024 examples/batch/WordCount.jar 

说明:

  • m:jobmanager的地址
  • yjm:jobmanager的内存大小
  • ytm:taskmanager的内存大小

2)提交任务

Flink高手之路2-Flink集群的搭建_第106张图片

3)查看yarn的web ui

Flink高手之路2-Flink集群的搭建_第107张图片

执行过程中出现错误
Flink高手之路2-Flink集群的搭建_第108张图片

解决错误,可以修改flink的配置

Flink高手之路2-Flink集群的搭建_第109张图片

分发配置文件,并重启flink

4)再次提交任务

Flink高手之路2-Flink集群的搭建_第110张图片

Flink高手之路2-Flink集群的搭建_第111张图片

5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭

Flink高手之路2-Flink集群的搭建_第112张图片

9.flink任务提交参数总结

Flink高手之路2-Flink集群的搭建_第113张图片

Flink高手之路2-Flink集群的搭建_第114张图片

Flink高手之路2-Flink集群的搭建_第115张图片

Flink高手之路2-Flink集群的搭建_第116张图片

Flink高手之路2-Flink集群的搭建_第117张图片

Flink高手之路2-Flink集群的搭建_第118张图片

参考文章:

flink启动后web访问问题

Flink高手之路:Flink的环境搭建

org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:Hadoop is not in the classpath/dependencies

flink 1.15.2集群搭建(Flink Standalone模式)

你可能感兴趣的:(Flink高手之路,flink,大数据,spark)