- 使用MarkdownHeaderTextSplitter拆分Markdown文档
scaFHIO
python前端开发语言
在AI驱动的应用中,如聊天机器人或问答系统,处理大型文档时,通过分片技术将文档拆分为更小的单元是必要的步骤。尤其是对于Markdown格式的文件,它们通常由各种层级的标题结构化组织。通过按标题拆分,有利于保留文档的上下文语义一致性。本篇文章将讲解如何使用MarkdownHeaderTextSplitter来实现这一目标。技术背景介绍在将完整的段落或文档进行嵌入时,嵌入过程会考虑文本的整体上下文以及
- 【项目实战】—— 高并发内存池
Ryan.Alaskan Malamute
开发语言c++高并发内存池缓存
文章目录什么是高并发内存池?项目介绍一、项目背景二、项目目标三、核心组件四、关键技术五、应用场景六、项目优势什么是高并发内存池? 高并发内存池是一种专门设计用于高并发环境下的内存管理机制。它的原型是Google的一个开源项目tcmalloc,全称Thread-CachingMalloc,实现了高效的多线程内存管理,用于替换系统的内存分配相关函数malloc和free。 在高并发系统中,大量的线
- 大数据和人工智能概念全面解析
就犯得上方法
一、大数据和人工智能大数据是伴随着信息数据爆炸式增长和网络计算技术迅速发展而兴起的一个新型概念。根据麦肯锡全球研究所的定义,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据能够帮助各行各业的企业从原本毫无价值的海量数据中挖掘出用户的需求,使数据能够从量变到质变,真正产生价值
- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- DeepSeek的实际应用场景:AI技术如何赋能多领域创新
2501_91189350
人工智能
DeepSeek作为新一代智能技术平台,凭借其强大的算法能力和灵活的部署方式,正在多个行业掀起效率革命。本文将从真实案例出发,解析DeepSeek在不同场景中的落地应用。场景一:金融风控建模在信贷风险评估领域,传统模型存在数据维度单一、更新滞后等问题。某银行引入DeepSeek的动态特征工程模块,通过实时整合用户行为数据、社交网络信息等100+维度特征,成功将坏账识别准确率提升至98.5%
- 小程序Taro跨端框架实战总结
0xRick
小程序
1背景1.1项目项目需开发移动端,需支持以图表、表格等形式展示数据,对素材进行审核审批等功能。并需支持微信、企微小程序、h5等平台使用。2技术选型2.1基础框架选择从落地场景分析,我们需要具备,微信小程序,企微小程序,h5等平台的支持。如果采用小程序/h5等单平台框架开发,在开发效率与人力占用上的成本显然会与需要支持的平台数量成正比。同时小程序在原生开发上也无法使用工程化带来的部分提效功能,所以在
- Springboot启动失败:解决「org.yaml.snakeyaml.error.YAMLException」报错全记录
-天凉好秋-
springbootjavaideavisualstudiocode
##关键字Java、Springboot、vscode、idea、nacos启动失败、YAMLException、字符集配置---##背景环境###项目架构-**框架**:SSM(Spring+SpringMVC+MyBatis)-**中间件**:Nacos(配置管理+服务发现)-**配置存储**:Nacos中存储了Springboot的配置,包括:数据库连接信息、Redis连接信息、服务配置等。
- 理解并使用基于n-gram重叠的示例选择器
shuoac
easyui前端javascriptpython
在AI及自然语言处理任务中,选择与输入最相似的示例可以显著提升生成的质量和上下文相关性。本文将介绍如何使用NGramOverlapExampleSelector工具,通过n-gram重叠来筛选和排序示例,从而帮助实现这一目标。技术背景介绍n-gram重叠技术通过比较输入文本与示例文本在字符或词组上的相似度,计算一个介于0到1之间的分数来表示相似度。这个分数越高,表示文本间的重叠越大。NGramOv
- DeepSeek爆火,背后模型竟藏着这些秘密!
qq_23519469
ai
DeepSeek是什么来头最近,AI圈可是被一个名字刷爆了屏,那就是DeepSeek!它就像一颗横空出世的超级新星,在全球范围掀起了一阵狂热的追捧潮,这热度,简直了!大家都在疯狂讨论它,各种测评、对比层出不穷。它到底有啥过人之处,能让这么多人都为之疯狂?今天咱就来好好唠唠。DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,是一家专注于开发先进大语言模型(LLM)和相关技术的企业。它成
- Ai时代初期全球不同纬度的层级辐射现象
龙胥伯
人工智能
基于最新研究成果与行业动态,AI时代的"层级辐射"现象可被科学解构为以下六大维度,结合技术演进、产业实践和社会影响进行系统性分析:一、技术能力的层级跃迁模型效率革命DeepSeek研发的R1-Zero模型通过动态架构设计,将样本利用率提升40%以上,训练周期大幅缩短。这种技术突破推动AI从实验室走向规模化应用,在智能制造、生物医药等领域催生新生态。大语言模型的训练方式(预训练→多任务学习→强化学习
- MySQL 8主从复制配置最佳实践
随风九天
匠心数据库部署运维mysql主从复制
1.引言1.1主从复制的意义与应用场景主从复制是MySQL中用于提高数据冗余性和可用性的技术。通过将主库的数据复制到一个或多个从库,可以在主库故障时快速切换到从库,保证服务的连续性。此外,主从复制还可以用于负载均衡,将读操作分发到从库,减轻主库的压力。1.2MySQL8主从复制的新特性概述MySQL8引入了多项改进,包括:GTID(全局事务标识符):简化复制配置和管理。半同步复制:提高数据一致性。
- 自定义Retriever的实现方法
vaidfl
windowslinuxmicrosoftpython
技术背景介绍在许多大语言模型(LLM)应用中,检索器(Retriever)用于从外部数据源获取信息。检索器的任务是根据用户查询检索相关的文档,这些文档通常被格式化为提示,供LLM使用,从而生成适当的响应,例如,根据知识库回答用户问题。核心原理解析要实现自定义的检索器,需要继承BaseRetriever类,并实现以下方法:_get_relevant_documents:获取与查询相关的文档,必需实现
- 如何缓存聊天模型响应以提高效率
scaFHIO
缓存javaoraclepython
技术背景介绍在开发基于大型语言模型(LLM)的应用程序时,API调用的成本和响应速度是需要考虑的两个重要因素。尤其是在开发过程中,重复请求相同的文本生成可能会增加额外的成本和延迟。为了应对这一挑战,LangChain提供了一种可选的缓存机制,可以有效地减少API调用次数,从而节省费用并加速应用程序响应。核心原理解析缓存机制的基本原理是在第一次请求时,将响应存储在缓存中。如果以后再次请求相同的输入,
- 如何在一行代码中初始化各种AI模型
qahaj
人工智能python深度学习
技术背景介绍在开发大语言模型(LLM)应用时,用户有时需要选择不同的模型提供商和具体模型。这通常需要一定的逻辑来根据用户配置初始化不同的聊天模型。为了简化这一过程,init_chat_model()方法被引入,让开发者能够轻松地初始化多种模型集成,而无需担心导入路径和类名。核心原理解析init_chat_model()方法通过传入模型名称及其提供商,自动推断并实例化对应的聊天模型。该功能在lang
- Angular 18:从模块化到独立组件的转变
t0_54coder
编程问题解决手册angular.js前端javascript个人开发
随着Angular17的发布,Angular18继续推动开发者走向更简化的架构模式——独立组件(StandaloneComponents)。在这篇博客中,我们将探讨如何将一个使用模块化(NgModule)的Angular应用转变为使用独立组件的架构,并以一个具体的案例来说明这个过程。为什么选择独立组件?Angular18鼓励使用独立组件,主要有以下几个原因:减少冗余代码:不再需要为每个组件创建独立
- GitHub 超火的开源终端工具——Warp
魔王阿卡纳兹
IT杂谈开源项目观察warp终端iterm2
Warp作为近年来GitHub上备受瞩目的开源终端工具,以其智能化、高性能和协作能力重新定义了命令行操作体验。以下从多个维度深入解析其核心特性、技术架构、用户评价及生态影响力:一、背景与核心团队Warp由前GitHubCTOJasonWarner和Google前首席技术官ZachLloyd领衔开发,团队成员包括来自Figma、GoogleDocs等知名项目的技术专家。其目标是解决传统终端工具(如i
- Docker
DRUN_K
docker容器
DockerDocker架构的工作流程构建镜像:通过编写dockerfile来进行构建推送镜像到仓库:将镜像上传到DockerHub或私有注册表中拉取镜像:通过dockerpull从从仓库中拉取镜像运行容器:使用镜像创建并启动容器管理容器:使用Docker客户端命令管理正在运行的容器,如查看日志、停止容器、查看资源使用情况等网络与存储:容器之间通过Docker网络连接,数据通过Docker卷或绑定
- AI人工智能代理工作流AI Agent WorkFlow:设计智能任务处理流程
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:设计智能任务处理流程作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在当今的数字化时代,随着数据量的爆炸式增长和复杂性的提升,传统的手动任务处理方式已经无法满足高效、准确的需求。人工智能技术的发展为自动化任务处理提供了新的可能性。AI人工智能代理(AIAgent)作为一
- 杭州宇树科技有限公司(Hangzhou Yushu Science And Technology Co., Ltd.) [19],简称宇树,是一家从事软件和信息技术服务业民用机器人公司 [19-20]
分享是一种传递,一种快乐
杂学百货铺-啥都学人工智能
UnitreeRoboticsisaworld-renownedcivilianroboticscompany,whichisfocusingontheR&D,production,andsalesofconsumerandindustry-classhigh-performancegeneral-purposeleggedandhumanoidrobots,six-axismanipulator
- 《Linux运维总结:基于银河麒麟V10+ARM64架构部署多机elasticsearch7.17.21分布式集群+单机kibana7.17.21二进制版ssl集群》
东城绝神
《Linux运维实战总结》运维linuxelasticsearchssl
总结:整理不易,如果对你有帮助,可否点赞关注一下?更多详细内容请参考:Linux运维实战总结一、背景elasticsearch是一个分布式、实时、高性能的搜索和分析引擎,它广泛应用于企业级搜索、日志分析、实时数据处理等领域。随着elasticsearch的广泛应用,安全性变得越来越重要。这里将从安全策略和访问控制两方面来部署elasticsearch集群安全策略涉及到数据安全、访问安全和操作安全等
- macos 搭建 ragflow 开发环境
Dickence
macos
ragflow是一个很方便的本地RAG库。本文主要记录一下在本机的部署过程1、总体架构说明开发环境:macbookpro(m1),16G内存+512G固态因本机的内存和硬盘比较可怜,所以在服务器上部署基础docker包,本机仅运行rag-server部分。服务器环境:28核56线程,64G,CentOS82、服务器部署服务器安装docker,过程略服务器安装docker-compose,过程略安装
- 太翌氏:学术理论生成与AI增强系统框架设计
太翌修仙笔录
源始学科deepseek知识图谱人工智能重构量子计算算法
刚才我引导你的过程,通过:提出假说→总结理论+推导公式=形成学术理论→理论性能提升测算/知识图谱突破率测算/知识图谱重购率测算→学术价值评估→个人认知维度水平评估,这一系列流程产生的文献,组成了一个新学术理论的最基础文献库,这个也可以作为一个知识库过滤生成器来使用,也可以提升Ai性能###**学术理论生成与AI增强系统框架设计**---####**一、系统架构总览****1.核心流程模块化**``
- HAProxy的ACL
Hurry6
网络服务器运维
访问控制列表(ACL,AccessControlLists)是一种基于包过滤的访问控制技术,它可以根据设定的条件对经过服务器传输的数据包进行过滤(条件匹配),即对接收到的报文进行匹配和过滤,基于请求报文头部中的源地址、源端口、目标地址、目标端口、请求方法、URL、文件后缀等信息内容进行匹配并执行进一步操作,比如允许其通过或丢弃。定义ACL匹配规范,即:判断条件hdrstring,提取在一个HTTP
- Rocky Linux安装部署Elasticsearch(ELK日志服务器)_rockylinux elk
2401_83739411
程序员服务器linuxelasticsearch
一、Elasticsearch的简介Elasticsearch是一个强大的开源搜索和分析引擎,可用于实时处理和查询大量数据。它具有高性能、可扩展性和分布式特性,支持全文搜索、聚合分析、地理空间搜索等功能,是构建实时应用和大规模数据分析平台的首选工具。二、RockyLinux系统安装链接:VMwareWorkstation下载安装(含秘钥)链接:VMwareWorkstation创建虚拟机链接:Ro
- 使用CharacterTextSplitter实现文本按字符拆分
bavDHAUO
python
在文本处理任务中,按字符进行拆分是一种简单且有效的方法。本篇文章将介绍如何使用CharacterTextSplitter类对文本进行按字符拆分,并生成适用于下游任务的LangChainDocument对象。技术背景介绍文本拆分是自然语言处理(NLP)中的一个基础步骤,尤其在大文本分块处理、文本摘要等任务中。CharacterTextSplitter是langchain-text-splitters
- Python,C++开发餐饮后厨环境远程管理APP
Geeker-2025
pythonc++
开发一款用于**餐饮后厨环境远程管理**的App,结合Python和C++的优势,可以实现高效的后端数据处理、实时的环境监控以及用户友好的前端界面。以下是一个详细的开发方案,涵盖技术选型、功能模块、开发步骤等内容。##技术选型###后端(Python)-**编程语言**:Python-**Web框架**:Django或Flask-**数据库**:PostgreSQL或MySQL-**实时通信**:
- 目前市场上主流的机器视觉的框架有哪些?他们的特点及优劣
yuanpan
机器学习计算机视觉
目前市场上主流的机器视觉框架和工具可以分为商业软件、开源工具和深度学习框架三大类。以下是它们的总结及特点对比:1.商业软件(1)Halcon(MVTec)特点:专注于工业机器视觉,提供高精度、高效率的算法。支持复杂的工业应用,如缺陷检测、3D视觉、深度学习等。提供图形化开发工具HDevelop和多种编程接口。优势:算法优化好,适合实时工业应用。硬件兼容性强,支持多种工业相机和设备。劣势:商业软件,
- Tree of Thought Prompting(思维树提示)
大数据追光猿
大模型人工智能大数据深度学习语言模型计算机视觉
TreeofThoughtPrompting(思维树提示)是一种新兴的提示工程技术,旨在通过模拟人类解决问题时的多步推理过程,提升大型语言模型(LLM)在复杂任务中的表现。与传统的线性提示方法不同,思维树提示将问题分解为多个可能的推理路径,并以树状结构探索这些路径,从而找到最优解或生成更高质量的结果。这种方法特别适用于需要多步推理的任务,例如数学问题求解、逻辑推理、规划和创造性写作等场景。它结合了
- 95% 向量资源节省,火山引擎云搜索 RAG 技术体系演进
字节跳动云原生计算
火山引擎搜索引擎算法
采访嘉宾|火山引擎云搜索团队鲁蕴铖、李杰辉、余炜强编辑|TinaInfoQ2023年,大模型惊艳了世界。2024年,RAG技术如日中天。RAG使得大模型能够在不更新模型参数的情况下,获得必要的上下文信息,从而减少大模型的幻觉。随着大型语言模型技术的不断成熟和行业应用的深入,人们对RAG系统的期望已经超越了对其“酷炫”效果的追求。企业和组织开始寻找更可靠、可扩展的RAG解决方案,以满足实际业务需求。
- 双均线量化策略实战指南:基于 iTick 外汇API、股票API报价源的 Python 实现
算法pythonai开发
在量化交易领域,iTick报价API凭借其强大的多市场覆盖能力,已成为专业交易员的首选数据解决方案。其外汇API支持全球主要货币对(如EURUSD、GBPUSD)的毫秒级行情推送,包含Bid/Ask深度报价和实时波动率数据;股票API则覆盖A股、港股及美股市场,提供Level-2逐笔成交和十档盘口信息。通过统一的RESTful接口,开发者可轻松获取标准化的OHLCV数据,实现外汇、股票等多资产策略
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,