C++学习历程:入门
- 博客主页:一起去看日落吗
- 持续分享博主的C++学习历程
博主的能力有限,出现错误希望大家不吝赐教
- 分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记,树成长之前也要扎根,也要在漫长的时光中沉淀养分。静下来想一想,哪有这么多的天赋异禀,那些让你羡慕的优秀的人也都曾默默地翻山越岭。
当线程申请某一大小的内存时,如果thread cache中对应的自由链表不为空,那么直接取出一个内存块进行返回即可,但如果此时该自由链表为空,那么这时thread cache就需要向central cache申请内存了。
central cache的结构与thread cache是一样的,它们都是哈希桶的结构,并且它们遵循的对齐映射规则都是一样的。这样做的好处就是,当thread cache的某个桶中没有内存了,就可以直接到central cache中对应的哈希桶里去取内存就行了。
central cache与thread cache有两个明显不同的地方,首先,thread cache是每个线程独享的,而central cache是所有线程共享的,因为每个线程的thread cache没有内存了都会去找central cache,因此在访问central cache时是需要加锁的。
但central cache在加锁时并不是将整个central cache全部锁上了,central cache在加锁时用的是桶锁,也就是说每个桶都有一个锁。此时只有当多个线程同时访问central cache的同一个桶时才会存在锁竞争,如果是多个线程同时访问central cache的不同桶就不会存在锁竞争。
central cache与thread cache的第二个不同之处就是,thread cache的每个桶中挂的是一个个切好的内存块,而central cache的每个桶中挂的是一个个的span。
每个span管理的都是一个以页为单位的大块内存,每个桶里面的若干span是按照双链表的形式链接起来的,并且每个span里面还有一个自由链表,这个自由链表里面挂的就是一个个切好了的内存块,根据其所在的哈希桶这些内存块被切成了对应的大小。
每个程序运行起来后都有自己的进程地址空间,在32位平台下,进程地址空间的大小是232;而在64位平台下,进程地址空间的大小就是264。
页的大小一般是4K或者8K,我们以8K为例。在32位平台下,进程地址空间就可以被分成 232 / 2 13 = 219 个页,在64位平台下,进程地址空间就可以被分成264 / 2 13 = 251 个页。页号本质与地址是一样的,它们都是一个编号,只不过地址是以一个字节为一个单位,而页是以多个字节为一个单位。
由于页号在64位平台下的取值范围是[0,251 ),因此我们不能简单的用一个无符号整型来存储页号,这时我们需要借助条件编译来解决这个问题。
#ifdef _WIN64
typedef unsigned long long PAGE_ID;
#elif _WIN32
typedef size_t PAGE_ID;
#else
//linux
#endif
需要注意的是,在32位下,_WIN32有定义,_WIN64没有定义;而在64位下,_WIN32和_WIN64都有定义。因此在条件编译时,我们应该先判断_WIN64是否有定义,再判断_WIN32是否有定义。
central cache的每个桶里挂的是一个个的span,span是一个管理以页为单位的大块内存,span的结构如下:
//管理以页为单位的大块内存
struct Span
{
PAGE_ID _pageId = 0; //大块内存起始页的页号
size_t _n = 0; //页的数量
Span* _next = nullptr; //双链表结构
Span* _prev = nullptr;
size_t _useCount = 0; //切好的小块内存,被分配给thread cache的计数
void* _freeList = nullptr; //切好的小块内存的自由链表
};
对于span管理的以页为单位的大块内存,我们需要知道这块内存具体在哪一个位置,便于之后page cache进行前后页的合并,因此span结构当中会记录所管理大块内存起始页的页号。
至于每一个span管理的到底是多少个页,这并不是固定的,需要根据多方面的因素来控制,因此span结构当中有一个_n成员,该成员就代表着该span管理的页的数量。
此外,每个span管理的大块内存,都会被切成相应大小的内存块挂到当前span的自由链表中,比如8Byte哈希桶中的span,会被切成一个个8Byte大小的内存块挂到当前span的自由链表中,因此span结构中需要存储切好的小块内存的自由链表。
span结构当中的_useCount成员记录的就是,当前span中切好的小块内存,被分配给thread cache的计数,当某个span的_useCount计数变为0时,代表当前span切出去的内存块对象全部还回来了,此时central cache就可以将这个span再还给page cache。
每个桶当中的span是以双链表的形式组织起来的,当我们需要将某个span归还给page cache时,就可以很方便的将该span从双链表结构中移出。如果用单链表结构的话就比较麻烦了,因为单链表在删除时,需要知道当前结点的前一个结点。
根据上面的描述,central cache的每个哈希桶里面存储的都是一个双链表结构,对于该双链表结构我们可以对其进行封装。
//带头双向循环链表
class SpanList
{
public:
SpanList()
{
_head = new Span;
_head->_next = _head;
_head->_prev = _head;
}
void Insert(Span* pos, Span* newSpan)
{
assert(pos);
assert(newSpan);
Span* prev = pos->_prev;
prev->_next = newSpan;
newSpan->_prev = prev;
newSpan->_next = pos;
pos->_prev = newSpan;
}
void Erase(Span* pos)
{
assert(pos);
assert(pos != _head); //不能删除哨兵位的头结点
Span* prev = pos->_prev;
Span* next = pos->_next;
prev->_next = next;
next->_prev = prev;
}
private:
Span* _head;
public:
std::mutex _mtx; //桶锁
};
需要注意的是,从双链表删除的span会还给下一层的page cache,相当于只是把这个span从双链表中移除,因此不需要对删除的span进行delete操作。
central cache的映射规则和thread cache是一样的,因此central cache里面哈希桶的个数也是208,但central cache每个哈希桶中存储就是我们上面定义的双链表结构。
class CentralCache
{
public:
//...
private:
SpanList _spanLists[NFREELISTS];
};
central cache和thread cache的映射规则一样,有一个好处就是,当thread cache的某个桶没有内存了,就可以直接去central cache对应的哈希桶进行申请就行了。
每个线程都有一个属于自己的thread cache,我们是用TLS来实现每个线程无锁的访问属于自己的thread cache的。而central cache和page cache在整个进程中只有一个,对于这种只能创建一个对象的类,我们可以将其设置为单例模式。
单例模式可以保证系统中该类只有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。单例模式又分为饿汉模式和懒汉模式,懒汉模式相对较复杂,我们这里使用饿汉模式就足够了。
//单例模式
class CentralCache
{
public:
//提供一个全局访问点
static CentralCache* GetInstance()
{
return &_sInst;
}
private:
SpanList _spanLists[NFREELISTS];
private:
CentralCache() //构造函数私有
{}
CentralCache(const CentralCache&) = delete; //防拷贝
static CentralCache _sInst;
};
为了保证CentralCache类只能创建一个对象,我们需要将central cache的构造函数和拷贝构造函数设置为私有,或者在C++11中也可以在函数声明的后面加上=delete进行修饰。
CentralCache类当中还需要有一个CentralCache类型的静态的成员变量,当程序运行起来后我们就立马创建该对象,在此后的程序中就只有这一个单例了。
CentralCache CentralCache::_sInst;
最后central cache还需要提供一个公有的成员函数,用于获取该对象,此时在整个进程中就只会有一个central cache对象了。
当thread cache向central cache申请内存时,central cache应该给出多少个对象呢?这是一个值得思考的问题,如果central cache给的太少,那么thread cache在短时间内用完了又会来申请;但如果一次性给的太多了,可能thread cache用不完也就浪费了。
我们这里采用了一个慢开始反馈调节算法。当thread cache向central cache申请内存时,如果申请的是较小的对象,那么可以多给一点,但如果申请的是较大的对象,就可以少给一点。
我们就可以根据所需申请的对象的大小计算出具体给出的对象个数,并且可以将给出的对象个数控制到2~512个之间。也就是说,就算thread cache要申请的对象再小,我最多一次性给出512个对象;就算thread cache要申请的对象再大,我至少一次性给出2个对象
//管理对齐和映射等关系
class SizeClass
{
public:
//thread cache一次从central cache获取对象的上限
static size_t NumMoveSize(size_t size)
{
assert(size > 0);
//对象越小,计算出的上限越高
//对象越大,计算出的上限越低
int num = MAX_BYTES / size;
if (num < 2)
num = 2;
if (num > 512)
num = 512;
return num;
}
};
但就算申请的是小对象,一次性给出512个也是比较多的,基于这个原因,我们可以在FreeList结构中增加一个叫做_maxSize的成员变量,该变量的初始值设置为1,并且提供一个公有成员函数用于获取这个变量。也就是说,现在thread cache中的每个自由链表都会有一个自己的_maxSize。
//管理切分好的小对象的自由链表
class FreeList
{
public:
size_t& MaxSize()
{
return _maxSize;
}
private:
void* _freeList = nullptr; //自由链表
size_t _maxSize = 1;
};
此时当thread cache申请对象时,我们会比较_maxSize和计算得出的值,取出其中的较小值作为本次申请对象的个数。此外,如果本次采用的是_maxSize的值,那么还会将thread cache中该自由链表的_maxSize的值进行加一。
因此,thread cache第一次向central cache申请某大小的对象时,申请到的都是一个,但下一次thread cache再向central cache申请同样大小的对象时,因为该自由链表中的_maxSize增加了,最终就会申请到两个。直到该自由链表中_maxSize的值,增长到超过计算出的值后就不会继续增长了,此后申请到的对象个数就是计算出的个数。(这有点像网络中拥塞控制的机制)
每次thread cache向central cache申请对象时,我们先通过慢开始反馈调节算法计算出本次应该申请的对象的个数,然后再向central cache进行申请。
如果thread cache最终申请到对象的个数就是一个,那么直接将该对象返回即可。为什么需要返回一个申请到的对象呢?因为thread cache要向central cache申请对象,其实由于某个线程向thread cache申请对象但thread cache当中没有,这才导致thread cache要向central cache申请对象。因此central cache将对象返回给thread cache后,thread cache会再将该对象返回给申请对象的线程。
但如果thread cache最终申请到的是多个对象,那么除了将第一个对象返回之外,还需要将剩下的对象挂到thread cache对应的哈希桶当中。
//从中心缓存获取对象
void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{
//慢开始反馈调节算法
//1、最开始不会一次向central cache一次批量要太多,因为要太多了可能用不完
//2、如果你不断有size大小的内存需求,那么batchNum就会不断增长,直到上限
size_t batchNum = std::min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));
if (batchNum == _freeLists[index].MaxSize())
{
_freeLists[index].MaxSize() += 1;
}
void* start = nullptr;
void* end = nullptr;
size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);
assert(actualNum >= 1); //至少有一个
if (actualNum == 1) //申请到对象的个数是一个,则直接将这一个对象返回即可
{
assert(start == end);
return start;
}
else //申请到对象的个数是多个,还需要将剩下的对象挂到thread cache中对应的哈希桶中
{
_freeLists[index].PushRange(NextObj(start), end);
return start;
}
}
这里我们要从central cache获取n个指定大小的对象,这些对象肯定都是从central cache对应哈希桶的某个span中取出来的,因此取出来的这n个对象是链接在一起的,我们只需要得到这段链表的头和尾即可,这里可以采用输出型参数进行获取。
//从central cache获取一定数量的对象给thread cache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size)
{
size_t index = SizeClass::Index(size);
_spanLists[index]._mtx.lock();//加锁
//在对应哈希桶中获取一个非空的span
Span* span = GetOneSpan(_spanLists[index], size);
assert(span); //span不为空
assert(span->_freeList); //span当中的自由链表也不为空
//从span中获取n个对象
//如果不够n个,有多少拿多少
start = span->_freeList;
end = start;
size_t i = 0;
size_t actualNum = 1;
while ( i < batchNum - 1 && NextObj(end) != nullptr)
{
end = NextObj(end);
++actualNum;
++i;
}
span->_freeList = NextObj(end); //取完后剩下的对象继续放到自由链表
NextObj(end) = nullptr; //取出的一段链表的表尾置空
// span->_useCount += actualNum; //更新被分配给thread cache的计数
_spanLists[index]._mtx.unlock(); //解锁
return actualNum;
}
由于central cache是所有线程共享的,所以我们在访问central cache中的哈希桶时,需要先给对应的哈希桶加上桶锁,在获取到对象后再将桶锁解掉。
在向central cache获取对象时,先是在central cache对应的哈希桶中获取到一个非空的span,然后从这个span的自由链表中取出n个对象即可,但可能这个非空的span的自由链表当中对象的个数不足n个,这时该自由链表当中有多少个对象就给多少就行了。
也就是说,thread cache实际从central cache获得的对象的个数可能与我们传入的n值是不一样的,因此我们需要统计本次申请过程中,实际thread cache获取到的对象个数,然后根据该值及时更新这个span中的小对象被分配给thread cache的计数。
需要注意的是,虽然我们实际申请到对象的个数可能比n要小,但这并不会产生任何影响。因为thread cache的本意就是向central cache申请一个对象,我们之所以要一次多申请一些对象,是因为这样一来下次线程再申请相同大小的对象时就可以直接在thread cache里面获取了,而不用再向central cache申请对象。
此外,如果thread cache最终从central cache获取到的对象个数是大于一的,那么我们还需要将剩下的对象插入到thread cache中对应的哈希桶中,为了能让自由链表支持插入一段范围的对象,我们还需要在FreeList类中增加一个对应的成员函数。
//管理切分好的小对象的自由链表
class FreeList
{
public:
//插入一段范围的对象到自由链表
void PushRange(void* start, void* end)
{
assert(start);
assert(end);
//头插
NextObj(end) = _freeList;
_freeList = start;
}
private:
void* _freeList = nullptr; //自由链表
size_t _maxSize = 1;
};