狄克斯特拉算法matlab,手撸golang 基本数据结构与算法 图的最短路径 狄克斯特拉算法...

缘起

最近阅读<>(【日】石田保辉;宫崎修一) 本系列笔记拟采用golang练习之

狄克斯特拉算法

与贝尔曼-福特算法类似,

狄克斯特拉(Dijkstra)算法也是求解最短路径问题的算法,

使用它可以求得从起点到终点的路径中权重总和最小的那条路径。

比起需要对所有的边都重复计算权重和更新权重的贝尔曼-福特算法,

狄克斯特拉算法多了一步选择顶点的操作,

这使得它在求最短路径上更为高效。

如果闭环中有负数权重,就不存在最短路径。

贝尔曼-福特算法可以直接认定不存在最短路径,

但在狄克斯特拉算法中,即便不存在最短路径,

它也会算出一个错误的最短路径出来。

因此,有负数权重时不能使用狄克斯特拉算法。

摘自 <> 【日】石田保辉;宫崎修一

狄克斯特拉算法与贝尔曼-福特算法非常相似, 主要区别在于总是优先选择权重最小的候选节点.

因此, 贝尔曼-福特算法使用队列或堆栈存储候选节点, 而狄克斯特拉算法使用堆.

流程

给定若干顶点, 以及顶点间的若干条边, 寻找从指定起点srcNode到指定终点dstNode的最小权重路径

设定srcNode的权重为0, 其他顶点的权重为无穷大

将srcNode节点送入候选堆

for 候选堆不为空:

从候选堆pop顶点node

如果node.id == dstNode.id, 循环结束

遍历从node出发的所有边, 将边的终点to的权重, 更新为min(终点权重, node.权重+边.权重)

如果to.权重 > node.权重+边.权重, 说明更新有效

如果更新有效, 判断to是否在堆中, 如果是, 则上浮以维护堆秩序, 否则, 将to节点push入候选堆

判断终点的权重是否被更新(!=无穷大), 如果是则说明存在最短路径

反向查找最短路径:

设定当前节点current = 终点

push节点current进路径队列

遍历终点为current的边, 查找符合条件的node:边的起点.权重 = current.权重-边.权重

push节点node进路径队列

循环1-4, 直到current == srcNode, 查找完成

设计

INode: 顶点接口

ILine: 边接口

IPathFinder: 最短路径查找算法接口

IComparator: 顶点比较接口

IHeap: 顶点堆接口

tNode: 顶点, 实现INode

tLine: 边, 实现ILine

tNodeWeightComparator: 基于权重的顶点比较器, 实现IComparator接口

tArrayHeap: 堆的实现

tDijkstraPathFinder: 狄克斯特拉算法的实现

单元测试

dijkstra_finder_test.go

package graph

import (

"fmt"

dk "learning/gooop/graph/dijkstra"

"strings"

"testing"

)

func Test_DijkstraFinder(t *testing.T) {

fnAssertTrue := func(b bool, msg string) {

if !b {

t.Fatal(msg)

}

}

nodes := []dk.INode{

dk.NewNode("a"),

dk.NewNode("b"),

dk.NewNode("c"),

dk.NewNode("d"),

dk.NewNode("e"),

dk.NewNode("f"),

dk.NewNode("g"),

}

lines := []dk.ILine {

dk.NewLine("a", "b", 9),

dk.NewLine("a", "c", 2),

dk.NewLine("b", "c", 6),

dk.NewLine("b", "d", 3),

dk.NewLine("b", "e", 1),

dk.NewLine("c", "d", 2),

dk.NewLine("c", "f", 9),

dk.NewLine("d", "e", 5),

dk.NewLine("d", "f", 6),

dk.NewLine("e", "f", 3),

dk.NewLine("e", "g", 7),

dk.NewLine("f", "g", 4),

}

for _,it := range lines[:] {

lines = append(lines, dk.NewLine(it.To(), it.From(), it.Weight()))

}

ok,path := dk.DijkstraPathFinder.FindPath(nodes, lines, "a", "g")

if !ok {

t.Fatal("failed to find min path")

}

fnPathToString := func(nodes []dk.INode) string {

items := make([]string, len(nodes))

for i,it := range nodes {

items[i] = fmt.Sprintf("%s", it)

}

return strings.Join(items, " ")

}

pathString := fnPathToString(path)

t.Log(pathString)

fnAssertTrue(pathString == "a(0) c(2) d(4) f(10) g(14)", "incorrect path")

}

测试输出

$ go test -v dijkstra_finder_test.go

=== RUN Test_DijkstraFinder

dijkstra_finder_test.go:63: a(0) c(2) d(4) f(10) g(14)

--- PASS: Test_DijkstraFinder (0.00s)

PASS

ok command-line-arguments 0.001s

INode.go

顶点接口

package dijkstra

type INode interface {

ID() string

GetWeight() int

SetWeight(int)

}

const MaxWeight = int(0x7fffffff_ffffffff)

ILine.go

边接口

package dijkstra

type ILine interface {

From() string

To() string

Weight() int

}

IPathFinder.go

最短路径查找算法接口

package dijkstra

type IPathFinder interface {

FindPath(nodes []INode, lines []ILine, from string, to string) (bool,[]INode)

}

IComparator.go

顶点比较接口

package dijkstra

type IComparator interface {

Less(a interface{}, b interface{}) bool

}

IHeap.go

顶点堆接口

package dijkstra

type IHeap interface {

Size() int

IsEmpty() bool

IsNotEmpty() bool

Push(node interface{})

Pop() (bool, interface{})

IndexOf(node interface{}) int

ShiftUp(i int)

}

tNode.go

顶点, 实现INode

package dijkstra

import "fmt"

type tNode struct {

id string

weight int

}

func NewNode(id string) INode {

return &tNode{

id,MaxWeight,

}

}

func (me *tNode) ID() string {

return me.id

}

func (me *tNode) GetWeight() int {

return me.weight

}

func (me *tNode) SetWeight(w int) {

me.weight = w

}

func (me *tNode) String() string {

return fmt.Sprintf("%s(%v)", me.id, me.weight)

}

tLine.go

边, 实现ILine

package dijkstra

type tLine struct {

from string

to string

weight int

}

func NewLine(from string, to string, weight int) ILine {

return &tLine{

from,to,weight,

}

}

func (me *tLine) From() string {

return me.from

}

func (me *tLine) To() string {

return me.to

}

func (me *tLine) Weight() int {

return me.weight

}

tNodeWeightComparator.go

基于权重的顶点比较器, 实现IComparator接口

package dijkstra

import "errors"

type tNodeWeightComparator struct {

}

func newNodeWeightComparator() IComparator {

return &tNodeWeightComparator{

}

}

func (me *tNodeWeightComparator) Less(a interface{}, b interface{}) bool {

if a == nil || b == nil {

panic(gNullArgumentError)

}

n1 := a.(INode)

n2 := b.(INode)

return n1.GetWeight() <= n2.GetWeight()

}

var gNullArgumentError = errors.New("null argument error")

tArrayHeap.go

堆的实现

package dijkstra

import (

"errors"

"fmt"

"strings"

)

type tArrayHeap struct {

comparator IComparator

items []interface{}

size int

version int64

}

func newArrayHeap(comparator IComparator) IHeap {

return &tArrayHeap{

comparator: comparator,

items: make([]interface{}, 0),

size: 0,

version: 0,

}

}

func (me *tArrayHeap) Size() int {

return me.size

}

func (me *tArrayHeap) IsEmpty() bool {

return me.size <= 0

}

func (me *tArrayHeap) IsNotEmpty() bool {

return !me.IsEmpty()

}

func (me *tArrayHeap) Push(value interface{}) {

me.version++

me.ensureSize(me.size + 1)

me.items[me.size] = value

me.size++

me.ShiftUp(me.size - 1)

me.version++

}

func (me *tArrayHeap) ensureSize(size int) {

for ;len(me.items) < size; {

me.items = append(me.items, nil)

}

}

func (me *tArrayHeap) parentOf(i int) int {

return (i - 1) / 2

}

func (me *tArrayHeap) leftChildOf(i int) int {

return i*2 + 1

}

func (me *tArrayHeap) rightChildOf(i int) int {

return me.leftChildOf(i) + 1

}

func (me *tArrayHeap) last() (i int, v interface{}) {

if me.IsEmpty() {

return -1, nil

}

i = me.size - 1

v = me.items[i]

return i,v

}

func (me *tArrayHeap) IndexOf(node interface{}) int {

n := -1

for i,it := range me.items {

if it == node {

n = i

break

}

}

return n

}

func (me *tArrayHeap) ShiftUp(i int) {

if i <= 0 {

return

}

v := me.items[i]

pi := me.parentOf(i)

pv := me.items[pi]

if me.comparator.Less(v, pv) {

me.items[pi], me.items[i] = v, pv

me.ShiftUp(pi)

}

}

func (me *tArrayHeap) Pop() (bool, interface{}) {

if me.IsEmpty() {

return false, nil

}

me.version++

top := me.items[0]

li, lv := me.last()

me.items[0] = nil

me.size--

if me.IsEmpty() {

return true, top

}

me.items[0] = lv

me.items[li] = nil

me.shiftDown(0)

me.version++

return true, top

}

func (me *tArrayHeap) shiftDown(i int) {

pv := me.items[i]

ok, ci, cv := me.minChildOf(i)

if ok && me.comparator.Less(cv, pv) {

me.items[i], me.items[ci] = cv, pv

me.shiftDown(ci)

}

}

func (me *tArrayHeap) minChildOf(p int) (ok bool, i int, v interface{}) {

li := me.leftChildOf(p)

if li >= me.size {

return false, 0, nil

}

lv := me.items[li]

ri := me.rightChildOf(p)

if ri >= me.size {

return true, li, lv

}

rv := me.items[ri]

if me.comparator.Less(lv, rv) {

return true, li, lv

} else {

return true, ri, rv

}

}

func (me *tArrayHeap) String() string {

level := 0

lines := make([]string, 0)

lines = append(lines, "")

for {

n := 1<

min := n - 1

max := n + min - 1

if min >= me.size {

break

}

line := make([]string, 0)

for i := min;i <= max;i++ {

if i >= me.size {

break

}

line = append(line, fmt.Sprintf("%4d", me.items[i]))

}

lines = append(lines, strings.Join(line, ","))

level++

}

return strings.Join(lines, "\n")

}

var gNoMoreElementsError = errors.New("no more elements")

tDijkstraPathFinder.go

狄克斯特拉算法的实现

package dijkstra

type tDijkstraPathFinder struct {

}

func newDijkstraPathFinder() IPathFinder {

return &tDijkstraPathFinder{}

}

func (me *tDijkstraPathFinder) FindPath(nodes []INode, lines []ILine, srcID string, dstID string) (bool,[]INode) {

// 节点索引

mapNodes := make(map[string]INode, 0)

for _,it := range nodes {

mapNodes[it.ID()] = it

}

srcNode, ok := mapNodes[srcID]

if !ok {

return false, nil

}

dstNode,ok := mapNodes[dstID]

if !ok {

return false, nil

}

// 边的索引

mapFromLines := make(map[string][]ILine, 0)

mapToLines := make(map[string][]ILine, 0)

for _, it := range lines {

if v,ok := mapFromLines[it.From()];ok {

mapFromLines[it.From()] = append(v, it)

} else {

mapFromLines[it.From()] = []ILine{ it }

}

if v,ok := mapToLines[it.To()];ok {

mapToLines[it.To()] = append(v, it)

} else {

mapToLines[it.To()] = []ILine{ it }

}

}

// 设置from节点的weight为0, 其他节点的weight为MaxWeight

for _,it := range nodes {

if it.ID() == srcID {

it.SetWeight(0)

} else {

it.SetWeight(MaxWeight)

}

}

// 将起点push到堆

heap := newArrayHeap(newNodeWeightComparator())

heap.Push(srcNode)

// 遍历候选节点

for heap.IsNotEmpty() {

_, top := heap.Pop()

from := top.(INode)

if from.ID() == dstID {

break

}

links, ok := mapFromLines[from.ID()]

if ok {

for _,line := range links {

if to,ok := mapNodes[line.To()];ok {

if me.updateWeight(from, to, line) {

n := heap.IndexOf(to)

if n >= 0 {

heap.ShiftUp(n)

} else {

heap.Push(to)

}

}

}

}

}

}

// 逆向查找最短路径

if dstNode.GetWeight() >= MaxWeight {

return false, nil

}

path := []INode{ dstNode }

current := dstNode

maxRound := len(lines)

for ;current != srcNode && maxRound > 0;maxRound-- {

linkedLines, _ := mapToLines[current.ID()]

for _,line := range linkedLines {

from, _ := mapNodes[line.From()]

if from.GetWeight() == current.GetWeight() - line.Weight() {

current = from

path = append(path, from)

}

}

}

if current != srcNode {

return false, nil

}

me.reverse(path)

return true, path

}

func (me *tDijkstraPathFinder) reverse(nodes []INode) {

for i,j := 0, len(nodes)-1;i < j;i,j=i+1,j-1 {

nodes[i], nodes[j] = nodes[j], nodes[i]

}

}

func (me *tDijkstraPathFinder) updateWeight(from INode, to INode, line ILine) bool {

w := me.min(from.GetWeight() + line.Weight(), to.GetWeight())

if to.GetWeight() > w {

to.SetWeight(w)

return true

}

return false

}

func (me *tDijkstraPathFinder) min(a, b int) int {

if a <= b {

return a

}

return b

}

var DijkstraPathFinder = newDijkstraPathFinder()

(end)

你可能感兴趣的:(狄克斯特拉算法matlab)