- 基于人体骨架动作识别的神经信息处理技术(2 相关工作-2.4提高信号质量)
路由跳变
动作识别人工智能
2相关工作在本节中,我们将回顾本论文的相关工作。我们根据文献的功能将文献分为四类,包括1)数据集,2)提取空间特征,3)捕获时间模式,4)提高信号质量。对于每个组件,我们将其进一步分解为细分区域。最后,我们展示了现有方法在不同数据集上的SOTA改进。总之,该分类法如下:1)数据集2)提取空间特征利用拓扑结构、设计空间操作符、分离通道功能、学习参数化拓扑、分区层次结构。3)捕获时间模式提取多尺度特征
- 探索《非官方知乎 API》:解锁知乎数据潜能指南
探索《非官方知乎API》:解锁知乎数据潜能指南Unofficial-Zhihu-API深度学习模型自动识别验证码,python爬虫库自动管理会话,通过简单易用的API,实现知乎数据的爬取项目地址:https://gitcode.com/gh_mirrors/un/Unofficial-Zhihu-API项目介绍非官方知乎API是一个由社区贡献的开源工具,位于https://github.com/l
- Linux编程——Makefile 使用
在先前的文章中,我们已经学习了gcc和gdb的使用。本节,我们将介绍Makefile的使用。Makefile带来的好处就是——“自动化编译”,一但写好,只需要一个make命令,整个工程便可以完全编译,极大的提高了软件的开发效率(特别是对于那些项目较大、文件较多的工程)。make是一个命令工具,最主要也是最基本的功能就是根据makefile文件中描述的源程序至今的相互关系来完成自动编译、维护多个源文
- 用Python爬虫抓取网页中的视频文件:从数据获取到处理与保存的完整教程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言selenium
一、引言随着在线视频平台的快速发展,视频成为了互联网中最重要的媒介之一。无论是用于娱乐、教育还是技术学习,视频内容都极大地改变了我们的信息获取方式。对于开发者、数据分析师或者研究者而言,获取和分析视频文件的数据不仅可以帮助他们深入理解某些平台的运营模式,也有助于建立自定义的多媒体内容库。爬虫技术是自动化抓取网页数据的一种工具。它通过模拟浏览器行为,抓取目标网页的内容。对于视频文件的抓取,尤其是那些
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 【网络编程】EPOLL 事件触发机制的服务器
啟明起鸣
网络服务器运维
文章目录业务拆解EPOLL机制介绍EPOLL的核心变量和函数EPOLL程序流程图C代码实现准备工作服务器代码代码运行效果总结推荐一个零声教育学习教程,个人觉得老师讲得不错,分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等技术内容,点击立即学习:https:/
- 华为研发岗位面试与暑期实习攻略:C++与Java深入解析
丹力
本文还有配套的精品资源,点击获取简介:华为的面试和暑期实习对IT求职者至关重要,涉及技术实力与团队协作。本文深入探讨了华为面试的要点,包括专业技能、项目经验、问题解决能力的考察,以及暑期实习和校招中的C++和Java研发岗位要求。在面试中,求职者需要展示C++11/14/17新特性、内存管理、设计模式,以及Java核心技术、JVM原理等,同时还需关注新技术趋势。积极学习和展现出学习能力与团队精神,
- 嵌入式开发学习日志Day14(ARM体系架构——RTC及ADC)
一、RTCRTC(实时时钟):非易失性在IMX6ULL内部SNVS(安全的非易失性存储器)提供RTC功能;原理图:二、ADC2.1基本概念ADC(模拟数字转换器):用于将连续变化的模拟信号转换为离散的数字信号以便数字系统对它进行处理;模拟信号:一般指连续变化的电压信号,其值在一定范围内变化;数字信号:由一系列离散数字表示仅取有限值,通常以二进制表示;2.2工作原理将模拟信号分割成一系列离散的取样,
- 学习笔记(28):随机噪声的原理、作用及代码实现详解
宁儿数据安全
#机器学习学习笔记python
学习笔记(28):随机噪声的原理、作用及代码实现详解一、什么是随机噪声?为什么需要添加?在机器学习中,随机噪声是指数据中无法用特征解释的随机波动,通常符合某种概率分布(如正态分布)。在房价模拟中添加噪声的核心原因如下:1.模拟真实世界的不确定性真实房价除了受面积、房龄影响,还受装修情况、学区、交通、政策等未被建模的特征影响,这些因素的综合效应可抽象为“噪声”。示例:两套面积和房龄相同的房子,房价可
- sqlmap使用详解
inrese
最近需要使用sqlmap工具,在此将学习记录记录下来。一、参数选项1、选项:-h,--help显示基本帮助信息并退出-hh显示高级帮助信息并退出--version显示程序的版本号并退出-vVERBOSE详细级别:0-6(默认为1)2、目标:必须至少提供这些选项之一来定义-uURL,--url=URL目标URL(例如“http://www.site.com/vuln.php?id=1”)-dDIRE
- 【k230基础教程之ADC,RTC,TIMER,WDT】
k230基础教程之ADC,RTC,TIMER,WDT一,ADC1.read_u16方法2.read_uv方法示例二,RTC1.init方法2.detatime方法示例三,TIMER(定时器)1.init方法2.deinit方法软件定时器控制LED灯四,WDT(看门狗)1.feed方法示例本教程皆来自立创官方教程,为博主学习使用所记录,使用开发板为立创的庐山派,如有需求可自行访问立创官网关于这些外设
- 学习笔记(29):训练集与测试集划分详解:train_test_split 函数深度解析
宁儿数据安全
#机器学习学习笔记深度学习
学习笔记(29):训练集与测试集划分详解:train_test_split函数深度解析一、为什么需要划分训练集和测试集?在机器学习中,模型需要经历两个核心阶段:训练阶段:用训练集数据学习特征与目标值的映射关系(如线性回归的权重)。测试阶段:用测试集评估模型在未见过的数据上的表现,避免“过拟合”(模型只记住训练数据的噪声,无法泛化到新数据)。类比场景:学生通过“练习题”(训练集)学习知识,再通过“考
- Spring Boot + AI,真的有搞头吗?5大步骤带你轻松入门
墨瑾轩
一起学学Java【一】springboot人工智能后端
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣亲爱的小伙伴们,你们是否听说过SpringBoot和AI结合的消息?是不是觉得这两者听起来就像是天作之合?没错,SpringBoot和AI的结合确实能为我们带来许多意想不到的好处!今天,我们就来一起探讨如何在SpringBoot项目中集成AI功能,让你的应用更
- 【学习】微信小程序开发指南:从零开始的完整实践
小程序
前言微信小程序作为腾讯推出的轻量级应用平台,自2017年正式发布以来,已经成为移动互联网生态中不可或缺的一部分。小程序具有"用完即走"的特点,无需下载安装,通过微信即可使用,为用户提供了便捷的服务体验,也为开发者提供了新的应用分发渠道。本文将从零开始,详细介绍微信小程序的开发流程,包括环境搭建、基础语法、核心功能实现、发布上线等各个环节,帮助初学者快速掌握小程序开发技能。一、微信小程序概述(一)什
- RAG实战指南 Day 2:RAG开发环境搭建与工具选择
在未来等你
RAG实战指南RAG向量检索LLMAI开发知识库
【RAG实战指南Day2】RAG开发环境搭建与工具选择开篇欢迎来到"RAG实战指南"系列的第2天!今天我们将聚焦RAG系统的开发环境搭建和工具选择,这是构建高效RAG应用的基础。一个合理的开发环境和工具链不仅能提升开发效率,还能确保系统的稳定性和扩展性。通过本文,你将掌握如何从零开始搭建RAG开发环境,了解主流工具的选择策略,并通过实际案例学习如何将这些工具组合起来构建完整的RAG工作流。理论基础
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- 计算机网络基础知识+学习路线
早起的小懒虫
计算机网络网络
计算机网络是一种将多个计算机设备通过通信线路连接在一起,使其能够相互传输数据和共享资源的技术和设施。1.基础知识学习计算机网络需要了解计算机硬件、操作系统、编程语言等基础知识。计算机硬件:计算机硬件包括中央处理器(CPU)、存储器、输入输出设备等。CPU是计算机的核心,负责执行程序和控制计算机的各种操作。存储器主要有随机存储器(RAM)和只读存储器(ROM),用于存储数据和程序。输入输出设备包括键
- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- 森林的智慧:随机森林与集成学习的民主之道
田园Coder
人工智能科普人工智能科普
当约阿夫·弗罗因德和罗伯特·沙皮尔提出的AdaBoost算法在90年代末期以其强大的预测精度震惊机器学习界,展示了“团结弱者为强者”的集成魅力时,另一种集成思想也在悄然孕育。这种思想同样信奉“众人拾柴火焰高”,但走的是一条与AdaBoost截然不同的路径:它不执着于反复调整数据权重去“关注”被前序模型分错的困难样本,而是致力于创造尽可能多样化的模型,然后让这些模型平等地投票。它的核心哲学是:如果每
- 工具学习_CVE Binary Tool
1.工具概述CVEBinaryTool是一个免费的开源工具,可帮助您使用国家漏洞数据库(NVD)常见漏洞和暴露(CVE)列表中的数据以及Redhat、开源漏洞数据库(OSV)、Gitlab咨询数据库(GAD)和Curl中的已知漏洞数据来查找软件中的已知脆弱性。该工具有两种主要操作模式:二进制扫描程序:可帮助您确定哪些包可能已作为软件的一部分包含在内。该程序包括360检查器,扫描程序主要适用于常见的
- Python —— pandas 主要方法 和 常用属性(一)
墨码
笔记知识点python数据分析Pandas
Pandas基础类型Series类型创建SeriesSeries的自定义索引读取SeriesPandaspandas数据分析统计包,是一款功能强大的用于数据分析的操作工具,由于其的实用性对操作数据的方便性广受欢迎,今天就来学习一下Pandas数据包的用法吧!在此之前推荐了解一下numpy基础类型说道数据类型,大家熟知的大概都是intstrbool等数据类型,或者是Python中的listtuple
- 机器学习:集成学习方法之随机森林(Random Forest)
慕婉0307
机器学习集成学习机器学习随机森林
一、集成学习与随机森林概述1.1什么是集成学习集成学习(EnsembleLearning)是机器学习中一种强大的范式,它通过构建并结合多个基学习器(baselearner)来完成学习任务。集成学习的主要思想是"三个臭皮匠,顶个诸葛亮",即通过组合多个弱学习器来获得一个强学习器。集成学习方法主要分为两大类:Bagging(BootstrapAggregating):并行训练多个基学习器,然后通过投票
- 板凳-------Mysql cookbook学习 (十一--------2)
fengye207161
mysql学习数据库
11.6扩展序列列的取值范围2025-07-0111.7序列顶部数值的再使用11.8确保各行按照给定顺序重编号思路1、创建表的空克隆2、使用insertinto......select从源表自制行3、删除源表,并将克隆表重命名为源表表名4、如果是巨大的MyISAM,并含有多个索引,创建新表时不定义除了auto_increment列之外的索引,会使整个过程更高效重新编号时解决主键冲突的示例通过一个完
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 用这些中医 APP,开启免费自学之旅!问止精一书院
2501_92057656
自学中医
零基础学中医学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts在众多中医学习网站中,问止中医凭借专为零基础者打造的免费课程脱颖而出,成为中医入门者的理想之选。对于想要学习中医却毫无基础的人来说,选对平台至关重要。问止中医深知零基础学习者的痛点,其免费报名课程从中医基础理论讲起,像阴阳五行、脏腑经络等核心知识,都以通俗易懂的方
- 45 岁学医晚吗?告诉你最晚不能超过的年龄
2501_92275177
学中医如何入门零基础学中医
零基础学中医学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts常有45岁的朋友问:“现在学医晚吗?”作为一名46岁才开始接触中医的学习者,我可以肯定地说:不晚!但要选对入门方式,而问止中医的免费报名课程,就是帮你打破年龄顾虑的绝佳跳板。很多人纠结“最晚不能超过多少岁”,其实中医学习更看重方法而非年龄。问止中医的免费课程专为中
- 机器学习在智能制造业中的应用:质量检测与设备故障预测
Blossom.118
机器学习与人工智能机器学习人工智能深度学习神经网络机器人sklearntensorflow
随着工业4.0和智能制造的推进,制造业正经历着一场深刻的数字化转型。智能制造业通过整合物联网(IoT)、大数据和机器学习等先进技术,实现从生产计划到质量控制的全流程优化。机器学习技术在智能制造业中的应用尤为突出,尤其是在质量检测和设备故障预测方面。本文将探讨机器学习在智能制造业中的应用,并分析其带来的机遇和挑战。一、智能制造业中的质量检测(一)传统质量检测方法的局限性传统的质量检测主要依赖于人工检
- 面了字节跳动的数据挖掘岗,感觉真的很难。。。
大模型爱好者社区
机器学习深度学习面试宝典数据挖掘人工智能数据分析算法面试
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对新手如何入门机器学习算法、该如何备战、面试常考点分享等热门话题进行了深入的讨论。基于社群的讨论,今天我整理了一个同学的面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们交流群。一面40min【编程题】有两种数据,分别是被转发的用户和转发的
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。