大家好,我是空空star,本篇带大家了解一道困难难度(实际很简单)的力扣sql练习题。
表:Trips
+-------------+----------+
| Column Name | Type |
+-------------+----------+
| id | int |
| client_id | int |
| driver_id | int |
| city_id | int |
| status | enum |
| request_at | date |
+-------------+----------+
id 是这张表的主键。
这张表中存所有出租车的行程信息。每段行程有唯一 id ,其中 client_id 和 driver_id 是 Users 表中 users_id 的外键。
status 是一个表示行程状态的枚举类型,枚举成员为(‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’) 。
表:Users
+-------------+----------+
| Column Name | Type |
+-------------+----------+
| users_id | int |
| banned | enum |
| role | enum |
+-------------+----------+
users_id 是这张表的主键。
这张表中存所有用户,每个用户都有一个唯一的 users_id ,role 是一个表示用户身份的枚举类型,枚举成员为 (‘client’, ‘driver’, ‘partner’) 。
banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 (‘Yes’, ‘No’) 。
取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。
写一段 SQL 语句查出 “2013-10-01” 至 “2013-10-03” 期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。
返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。
查询结果格式如下例所示。
输入:
Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| id | client_id | driver_id | city_id | status | request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1 | 1 | 10 | 1 | completed | 2013-10-01 |
| 2 | 2 | 11 | 1 | cancelled_by_driver | 2013-10-01 |
| 3 | 3 | 12 | 6 | completed | 2013-10-01 |
| 4 | 4 | 13 | 6 | cancelled_by_client | 2013-10-01 |
| 5 | 1 | 10 | 1 | completed | 2013-10-02 |
| 6 | 2 | 11 | 6 | completed | 2013-10-02 |
| 7 | 3 | 12 | 6 | completed | 2013-10-02 |
| 8 | 2 | 12 | 12 | completed | 2013-10-03 |
| 9 | 3 | 10 | 12 | completed | 2013-10-03 |
| 10 | 4 | 13 | 12 | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+
Users 表:
+----------+--------+--------+
| users_id | banned | role |
+----------+--------+--------+
| 1 | No | client |
| 2 | Yes | client |
| 3 | No | client |
| 4 | No | client |
| 10 | No | driver |
| 11 | No | driver |
| 12 | No | driver |
| 13 | No | driver |
+----------+--------+--------+
输出:
+------------+-------------------+
| Day | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33 |
| 2013-10-02 | 0.00 |
| 2013-10-03 | 0.50 |
+------------+-------------------+
解释:
2013-10-01:
select request_at Day,
round(sum(case when status<>'completed' then 1 else 0 end)/count(1),2) "Cancellation Rate"
from Trips u1
left join Users u2
on u1.client_id=u2.users_id
left join Users u3
on u1.driver_id=u3.users_id
where u2.banned='No'
and u3.banned='No'
and (request_at between '2013-10-01' and '2013-10-03')
group by request_at
select request_at Day,
round(sum(case when status<>'completed' then 1 else 0 end)/count(1),2) "Cancellation Rate"
from Trips u1
join Users u2
on u1.client_id=u2.users_id and u2.banned='No'
join Users u3
on u1.driver_id=u3.users_id and u3.banned='No'
where request_at between '2013-10-01' and '2013-10-03'
group by request_at
select request_at Day,
round(sum(if(status<>'completed',1,0))/count(1),2) "Cancellation Rate"
from Trips u1
join Users u2
on u1.client_id=u2.users_id and u2.banned='No'
join Users u3
on u1.driver_id=u3.users_id and u3.banned='No'
where request_at between '2013-10-01' and '2013-10-03'
group by request_at
select request_at Day,
round(sum(if(status='completed',0,1))/count(1),2) "Cancellation Rate"
from Trips u1
join Users u2
on u1.client_id=u2.users_id and u2.banned='No'
join Users u3
on u1.driver_id=u3.users_id and u3.banned='No'
where request_at between '2013-10-01' and '2013-10-03'
group by request_at
分子 +1 +0的判断:
if(status='completed',0,1)
if(status<>'completed',1,0)
if(status in('cancelled_by_driver','cancelled_by_client'),1,0)
if(status not in('completed'),1,0)
也可以把if
改成case when
来实现
示范中有的用的left join
,有的用的join
,需要注意限定条件banned='No’是否可以加在on
后边,还是必须加在where
后边
示范中的count(1)
是否可以改为count(*)
或者count(id)
或者sum(1)
当把每一个点都掌握后,整个看起来就很简单。