>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
[ 0.1598, 0.0788, -0.0745, -1.2700],
[ 1.2208, 1.0722, -0.7064, 1.2564],
[ 0.0669, -0.2318, -0.8229, -0.9280]])
>>> torch.argsort(a, dim=1)
tensor([[2, 0, 3, 1],
[3, 2, 1, 0],
[2, 1, 0, 3],
[3, 2, 1, 0]])
>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ True, False],
[False, True]])
如果两个张量具有相同的大小和元素,则为 True,否则为 False。
>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2]))
True
>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, True], [False, True]])
>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [False, False]])
返回一个带有布尔元素的新张量,表示输入的每个元素是否“接近”其他元素的相应元素。 亲密度定义为:
>>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4)))
tensor([ True, False, False])
>>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5)
tensor([True, True])
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([True, False, True, False, False])
测试元素的每个元素是否在 test_elements 中。 返回与元素相同形状的布尔张量,对于 test_elements 中的元素为 True,否则为 False。
torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3]))
tensor([[False, True],
[ True, False]])
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([False, True, False, True, False])
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isposinf(a)
tensor([False, True, False])
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isneginf(a)
tensor([ True, False, False])
返回一个新的张量,其中布尔元素表示输入的每个元素是否为NaN。当复数值的实部和/或虚部为NaN时,将其视为NaN。
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
tensor([False, True, False])
返回一个新的张量,其中布尔元素表示输入的每个元素是否为实值。所有实数类型都被认为是实数。当复数值的虚部为0时,它们被认为是实数。
>>> torch.isreal(torch.tensor([1, 1+1j, 2+0j]))
tensor([True, False, True])
返回一个命名元组(值、索引),其中值是给定维度dim中输入张量每行的第k个最小元素。索引是找到的每个元素的索引位置。
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.kthvalue(x, 4)
torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3))
>>> x=torch.arange(1.,7.).resize_(2,3)
>>> x
tensor([[ 1., 2., 3.],
[ 4., 5., 6.]])
>>> torch.kthvalue(x, 2, 0, True)
torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))
>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, False], [True, True]])
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, False], [True, False]])
>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.maximum(a, b)
tensor([3, 2, 4])
>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.minimum(a, b)
tensor([1, 0, -1])
>>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')])
>>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')])
>>> torch.fmax(a, b)
tensor([9.7000, 0.5000, 3.1000, nan])
>>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')])
>>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')])
>>> torch.fmin(a, b)
tensor([-9.3000, 0.1000, 2.1000, nan])
>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [True, False]])
>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-0.2162, 0.0608, 0.6719, 2.3332],
[-0.5793, 0.0061, 0.6058, 0.9497],
[-0.5071, 0.3343, 0.9553, 1.0960]])
>>> indices
tensor([[ 1, 0, 2, 3],
[ 3, 1, 0, 2],
[ 0, 3, 1, 2]])
>>> sorted, indices = torch.sort(x, 0)
>>> sorted
tensor([[-0.5071, -0.2162, 0.6719, -0.5793],
[ 0.0608, 0.0061, 0.9497, 0.3343],
[ 0.6058, 0.9553, 1.0960, 2.3332]])
>>> indices
tensor([[ 2, 0, 0, 1],
[ 0, 1, 1, 2],
[ 1, 2, 2, 0]])
>>> x = torch.tensor([0, 1] * 9)
>>> x.sort()
torch.return_types.sort(
values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1]))
>>> x.sort(stable=True)
torch.return_types.sort(
values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17]))
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.topk(x, 3)
torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))
>>> t = torch.randn(3, 4)
>>> t
tensor([[-0.1321, 0.4370, -1.2631, -1.1289],
[-2.0527, -1.1250, 0.2275, 0.3077],
[-0.0881, -0.1259, -0.5495, 1.0284]])
>>> torch.msort(t)
tensor([[-2.0527, -1.1250, -1.2631, -1.1289],
[-0.1321, -0.1259, -0.5495, 0.3077],
[-0.0881, 0.4370, 0.2275, 1.0284]])