本文代码来之《数据分析与挖掘实战》,在此基础上补充完善了一下~
代码是基于SVM的分类器Python实现,原文章节题目和code关系不大,或者说给出已处理好数据的方法缺失、源是图像数据更是不见踪影,一句话就是练习分类器(▼㉨▼メ)
源代码直接给好了K=30,就试了试怎么选的,挑选规则设定比较单一,有好主意请不吝赐教哟
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 12 12:19:34 2018
@author: Luove
"""
from sklearn import svm
from sklearn import metrics
import pandas as pd
import numpy as np
from numpy.random import shuffle
#from random import seed
#import pickle #保存模型和加载模型
import os
os.getcwd()
os.chdir("D:/Analyze/Python Matlab/Python/BookCodes/Python数据分析与挖掘实战/图书配套数据、代码/chapter9/demo/code")
inputfile = "../data/moment.csv"
data=pd.read_csv(inputfile)
data.head()
data=data.as_matrix()
#seed(10)
shuffle(data) #随机重排,按列,同列重排,因是随机的每次运算会导致结果有差异,可在之前设置seed
n=0.8
train=data[:int(n*len(data)),:]
test=data[int(n*len(data)):,:]
#建模数据 整理
#k=30
m=100
record=pd.DataFrame(columns=["acurrary_train","acurrary_test"])
for k in range(1,m+1):
# k特征扩大倍数,特征值在0-1之间,彼此区分度太小,扩大以提高区分度和准确率
x_train=train[:,2:]*k
y_train=train[:,0].astype(int)
x_test=test[:,2:]*k
y_test=test[:,0].astype(int)
model=svm.SVC()
model.fit(x_train,y_train)
#pickle.dump(model,open("../tmp/svm1.model","wb"))#保存模型
#model=pickle.load(open("../tmp/svm1.model","rb"))#加载模型
#模型评价 混淆矩阵
cm_train=metrics.confusion_matrix(y_train,model.predict(x_train))
cm_test=metrics.confusion_matrix(y_test,model.predict(x_test))
pd.DataFrame(cm_train,index=range(1,6),columns=range(1,6))
accurary_train=np.trace(cm_train)/cm_train.sum() #准确率计算
# accurary_train=model.score(x_train,y_train) #使用model自带的方法求准确率
pd.DataFrame(cm_test,index=range(1,6),columns=range(1,6))
accurary_test=np.trace(cm_test)/cm_test.sum()
record=record.append(pd.DataFrame([accurary_train,accurary_test],index=["accurary_train","accurary_test"]).T)
record.index=range(1,m+1)
find_k=record.sort_values(by=["accurary_train","accurary_test"],ascending=False) # 生成一个copy 不改变原变量
find_k[(find_k["accurary_train"]>0.95) & (find_k["accurary_test"]>0.95) & (find_k["accurary_test"]>=find_k["accurary_train"])]
#len(find_k[(find_k["accurary_train"]>0.95) & (find_k["accurary_test"]>0.95)])
""" k=33
accurary_train accurary_test
33 0.950617 0.95122
"""
""" 计算一下整体
accurary_data
0.95073891625615758
"""
k=33
x_train=train[:,2:]*k
y_train=train[:,0].astype(int)
model=svm.SVC()
model.fit(x_train,y_train)
model.score(x_train,y_train)
model.score(datax_train,datay_train)
datax_train=data[:,2:]*k
datay_train=data[:,0].astype(int)
cm_data=metrics.confusion_matrix(datay_train,model.predict(datax_train))
pd.DataFrame(cm_data,index=range(1,6),columns=range(1,6))
accurary_data=np.trace(cm_data)/cm_data.sum()
accurary_data
REF:
《数据分析与挖掘实战》
源代码及数据需要可自取:https://github.com/Luove/Data
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
本文标题: Python实现基于SVM的分类器的方法
本文地址: http://www.cppcns.com/jiaoben/python/266039.html