Python:实现两张图片对比得出相似度

import numpy
import cv2
from PIL import Image


def calculate(image1, image2):
    image1 = cv2.cvtColor(numpy.asarray(image1), cv2.COLOR_RGB2BGR)
    image2 = cv2.cvtColor(numpy.asarray(image2), cv2.COLOR_RGB2BGR)
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree


def classify_hist_with_split(image1, image2, size=(256, 256)):
    image1 = Image.open(image1)
    image2 = Image.open(image2)
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.cvtColor(numpy.asarray(image1), cv2.COLOR_RGB2BGR)
    image2 = cv2.cvtColor(numpy.asarray(image2), cv2.COLOR_RGB2BGR)
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data


if __name__ == '__main__':
    img1_path = r"E:\report\camera_pictures\\2.png"
    img2_path = r"E:\report\camera_pictures\\3.png"
    result1 = classify_hist_with_split(img1_path, img2_path)
    print("相似度为:" + "%.2f%%" % (result1 * 100))

运行结果:

D:\Python3.8.6\python.exe D:/PythonWorkSpace/chenbang/test_4.py
相似度为:87.70%

Process finished with exit code 0

注意事项:

在自动化测试对比图片时,实际场景可能受时间、设备、摄像头影响,可能不准确。解决方法是循环对比5次,有一次大于80%就break退出循环,每一次对比睡眠1s,如果5次都对比失败了,则图片对比fail

你可能感兴趣的:(python,机器学习,计算机视觉)