基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用实践技术

植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。此外,由于生态工程保护建设和植被自然生长等因素,中国陆地生态系统发挥了重要的碳汇作用。因此,定量评估植被时空动态变化是制定生态系统可持续发展目标和衡量生态系统固碳潜力的重要前提,卫星遥感数据衍生的生态参量产品为研究长时间序列全球及区域植被时空变化提供了重要数据源。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。

本内容重点分析长时间序列卫星遥感产品数据应用时需要掌握的经验及编程技巧,以期辅助解决陆地生态系统研究中相关的科学难题,为今后陆地生态系统“碳汇”能力的评估提供科学决策依据,更好地服务2060“碳中和”战略目标需求。

基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用实践技术_第1张图片

基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用实践技术_第2张图片

基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用实践技术_第3张图片基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用实践技术_第4张图片

 

 

【其他相关推荐】:

R语言生物群落(生态)数据统计分析实践与应用

R语言生态环境数据多元统计实践与应用

GEE遥感云大数据在林业中的应用

基于“PLUS模型+”生态系统服务多情景模拟预测实践技术

Python与Noah-MP陆面过程模型融合技术及在站点、区域模拟

Python语言在地球科学交叉领域中的实践技术融合应用

双碳目标下基于“遥感+”融合技术在碳储量、碳收支、碳循环等多领域监测与模拟实践应用

你可能感兴趣的:(遥感监测,农林生态,语言类,pytorch,目标检测)