代码随想录算法训练营第四十六天|139.单词拆分、多重背包、背包问题总结篇

一·、单词划分

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

分析如下:

动规五部曲分析如下:

1.确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

2.确定递推公式

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

3.dp数组如何初始化

从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。

那么dp[0]有没有意义呢?

dp[0]表示如果字符串为空的话,说明出现在字典里。

但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

4.确定遍历顺序

题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。

还要讨论两层for循环的前后顺序。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

本题一定是 先遍历 背包,再遍历物品。

5.举例推导dp[i]

代码如下:

class Solution {
public:
    bool wordBreak(string s, vector& wordDict) {
      unordered_set workSet(wordDict.begin(),wordDict.end());
      vector dp(s.size()+1,false);
      dp[0]=true;
      for(int i=1;i<=s.size();i++)
      {
          for(int j=0;j

二、多重背包

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

多重背包力扣上没有原题,所以菜菜去acwing上刷一题看看

代码如下:

#include 
using namespace std;
const int N=110;
int n,m;
int v[N],w[N],s[N];
int dp[N][N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
           for(int k=0;k<=s[i]&&k*v[i]<=j;k++)
           {
              dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]*k]+k*w[i]);   
           }
        }
    }
    cout<

三、背包总结

动态规划必须分为5步进行,切记切记

背包问题总结:

递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和(opens new window)
  • 动态规划:518. 零钱兑换 II(opens new window)
  • 动态规划:377.组合总和Ⅳ(opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零(opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换(opens new window)
  • 动态规划:279.完全平方数

递归顺序 

01背包

在动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

和动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

#完全背包

说完01背包,再看看完全背包。

在动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

  • 求组合数:动态规划:518.零钱兑换II(opens new window)
  • 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

  • 求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

你可能感兴趣的:(算法)