小波神经网络的基本原理,小波神经网络算法原理

什么是“小波神经网络”?能干什么用呀

小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。

它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。 即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。

它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。

“小波神经网络”的应用:1、在影像处理方面,可以用于影像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高解析度等。2、在信号分析中的应用也十分广泛。

它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等。3、在工程技术等方面的应用。

包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面。扩展资料:小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。

其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。

小波神经网络具有以下特点:首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。

谷歌人工智能写作项目:小发猫

神经网络中的激活函数是用来干什么的?

神经网络算法为什么要用激活函数

楼主你好!根据你的描述,让我来给你回答!翻译为激活函数(activationfunction)会更好。激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。

希望能帮到你,如果满意,请记得采纳哦~~~。

bp神经网络选择激活sigmoid函数,还有tansig函数的优缺点?求告知?

(1)对于深度神经网络,中间的隐层的输出必须有一个激活函数。否则多个隐层的作用和没有隐层相同。这个激活函数不一定是sigmoid,常见的有sigmoid、tanh、relu等。

(2)对于二分类问题,输出层是sigmoid函数。这是因为sigmoid函数可以把实数域光滑的映射到[0,1]空间。函数值恰好可以解释为属于正类的概率(概率的取值范围是0~1)。

另外,sigmoid函数单调递增,连续可导,导数形式非常简单,是一个比较合适的函数(3)对于多分类问题,输出层就必须是softmax函数了。softmax函数是sigmoid函数的推广。

神经网络的激活函数和传递函数有什么区别?

理论上讲任何一个连续的非多项式、常数函数都可以做为BP的激活函数,而且这都是已经在数学上证明过的问题。

但sigmoid函数相对其他函数有它自身的优点,比如说光滑性,鲁棒性,以及在求导的时候可以用它自身的某种形式来表示。这一点在做数值试验的时候很重要,因为权值的反向传播,要求激活函数的导数。

多层就有多个导数,如果用一般的连续函数,这对计算机的存储和运算都是一个问题,此外还要考虑整个模型的收敛速度,我上面提到连续函数都可以做激活函数。

但是相应的Sigmoidal型函数的收敛速度还是比较快的,(相同的结构前提下)还有就是BP在做分类问题的时候,Sigmoidal函数能比较好的执行这一条件,关于连续函数可以做激活函数的证明,可以在IEEEtrans.onneuralnetworks和NeuralNetworks以及NeuralComputating和NeuralComputation上找到。

神经网络为什么要有激活函数,为什么relu 能够防止梯度消失

增加网络的非线性能力,从而拟合更多的非线性过程。ReLU在一定程度上能够防止梯度消失,但防止梯度消失不是用它的主要原因,主要原因是求导数简单。

一定程度是指,右端的不会趋近于饱和,求导数时,导数不为零,从而梯度不消失,但左端问题依然存在,一样掉进去梯度也会消失。所以出现很多改进的ReLU。

 

你可能感兴趣的:(神经网络,神经网络,算法,机器学习)