本文结合其他博主的一些介绍总结了dot函数运算过程
dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积、多维矩阵乘法和矩阵与向量的乘法。
向量其实是一维的矩阵,两个向量进行内积运算时,需要保证两个向量包含的元素个数是相同的。
例1:
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7])
y = np.array([2, 3, 4, 5, 6, 7, 8])
result = np.dot(x, y)
print(result)
输出结果:
168
计算过程就是将向量中对应元素相乘,再相加所得。即普通的向量乘法运算。
注意:
1.数组的运算是元素级的,数组相乘的结果是各对应元素的积组成的数组,而对于矩阵而言,需要求的是点积
2.两个矩阵(x, y)如果可以进行乘法运算,需要满足以下条件:
x为 m×n 阶矩阵,y为 n×p 阶矩阵,
则相乘的结果 result 为 m×p 阶矩阵。例子如下
例2:
import numpy as np
x = np.array([[1, 2, 3],
[3, 4, 4]])
y = np.array([[0, 1, 1, 1],
[1, 2, 0, 1],
[0, 0, 2, 1]])
result = np.dot(x, y)
print(result)
print("x阶数:" + str(x.shape))
print("y阶数:" + str(y.shape))
print("result阶数:" + str(result.shape))
结果为:
[[ 2 5 7 6]
[ 4 11 11 11]]
x阶数:(2, 3)
y阶数:(3, 4)
result阶数:(2, 4)
下面我们来分析一下一维数组到多维数组之间的运算过程
np.dot(5,8) 40
#如果arr1和arr2都是一维数组,那么它返回的就是向量的内积
arr1=np.array([2,3])
arr2=np.array([4,5])
np.dot(arr1,arr2)
#23
如图所示:
#如果arr5 和arr6都是二维数组,那么它返回的是矩阵乘法
arr5=np.array([[2,3],[4,5]])
arr6=np.array([[6,7],[8,9]])
np.dot(arr5,arr6)
"""
array([36,4],
[64,73])
"""
运算过程如下所示:
#arr7二维数组与arr8三维数组的dot函数矩阵运算
arr7=np.array([[2,3,4],[5,6,7]])
arr8=np.array([[0,1,2],[3,4,5],[6,7,8]])
np.dot(arr7,arr8)
"""
array([33,42,51],[60,78,96])
"""
#多维数组的dot函数矩阵运算
arr12=np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11]])
arr13=np.array([[0,1,2],[3,4,5],[6,7,8]])
np.dot(arr12,arr13)
"""
array([15,18,21],
[42,54,66],
[69,90,111],
[96,126,156])
"""
注意:
dot()函数可以通过NumPy库调用,也可以由数组实例对象进行调用。例如:a.dot(b) 与 np.dot(a,b)效果相同。但矩阵积计算不遵循交换律,np.dot(a,b) 和 np.dot(b,a) 得到的结果是不一样的。