title: Pytorch学习笔记-Pytorch快速入门
学习笔记和实现代码详见如下:
"""
pytorch官网:
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
QUICKSTART
DATAT: FashionMNIST
@Author Yuzzz
"""
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Working with data
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="./data/",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="./data/",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
# Creating Models
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
# Optimizing the Model Parameters
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
# # 预测模型
# epochs = 5
# for t in range(epochs):
# print(f"Epoch {t + 1}\n-------------------------------")
# train(train_dataloader, model, loss_fn, optimizer)
# test(test_dataloader, model, loss_fn)
# print("Done!")
# Saving Models
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
# Loading Models
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
# 结果测试
classes = [ # 重新设置标签信息
"T-shirt/top", # 0
"Trouser", # 1
"Pullover", # 2
"Dress", # 3
"Coat", # 4
"Sandal", # 5
"Shirt", # 6
"Sneaker", # 7
"Bag", # 8
"Ankle boot", # 9
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')