Three中的加载脚本很多,但是核心思想是差不多的,就是文件用文件解析器加载,图片用图片解析器加载,然后json转换为对象,但是由于gltf格式可以自己编辑所以有的源码参考意义不大,glb及拓展材质都没用上就还没有翻译,以后可能会补上。
/**
* @author Rich Tibbett / https://github.com/richtr
* @author mrdoob / http://mrdoob.com/
* @author Tony Parisi / http://www.tonyparisi.com/
* @author Takahiro / https://github.com/takahirox
* @author Don McCurdy / https://www.donmccurdy.com
*/
/*
* 本文档为Three.js翻译文档,如有任何疑问请联系:
* [email protected]
*/
THREE.GLTFLoader = (function () {
/**
* @description GLTF的加载文件
* @date 2019-04-16
* @param {*} manager 加载管理器
*/
function GLTFLoader(manager) {
//新建一个加载管理器
this.manager = (manager !== undefined) ? manager : THREE.DefaultLoadingManager;
//设置点云加载器为空,接收draco文件的
this.dracoLoader = null;
}
GLTFLoader.prototype = {
constructor: GLTFLoader,
crossOrigin: 'anonymous',
/**
* @description gltf加载方法
* @date 2019-04-17
* @param {*} url url的地址
* @param {*} onLoad 加载方法
* @param {*} onProgress 加载过程中调用的方法
* @param {*} onError 加载失败调用的方法
*/
load: function (url, onLoad, onProgress, onError) {
//获得this
var scope = this;
//创建一个资源路径
var resourcePath;
//获得路径
if (this.resourcePath !== undefined) {
resourcePath = this.resourcePath;
} else if (this.path !== undefined) {
resourcePath = this.path;
} else {
resourcePath = THREE.LoaderUtils.extractUrlBase(url);
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
//加载管理器开始监听url
scope.manager.itemStart(url);
//加载失败的方法
var _onError = function (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
scope.manager.itemEnd(url);
};
//新建一个文件加载器
var loader = new THREE.FileLoader(scope.manager);
//设置路径
loader.setPath(this.path);
//设置响应类型,响应类型在FileLoader有写
loader.setResponseType('arraybuffer');
//开始加载资源,有两个参数,一个是url一个是加载成功的数据方法
loader.load(url, function (data) {
try {
//尝试去加载资源
scope.parse(data, resourcePath, function (gltf) {
//返回的gltf是可以直接导入到场景的gltf
onLoad(gltf);
//结束管理器的监听
scope.manager.itemEnd(url);
}, _onError);
} catch (e) {
_onError(e);
}
}, onProgress, _onError);
},
/**
* @description 应该是设置gltf的类型
* @date 2019-04-17
* @param {*} value
* @returns
*/
setCrossOrigin: function (value) {
this.crossOrigin = value;
return this;
},
/**
* @description 设置路径
* @date 2019-04-17
* @param {*} value
* @returns
*/
setPath: function (value) {
this.path = value;
return this;
},
/**
* @description 设置资源路径,这个和上一个的区别是上一个可以是一个相对路径,这个是绝对路径
* @date 2019-04-17
* @param {*} value
* @returns
*/
setResourcePath: function (value) {
this.resourcePath = value;
return this;
},
/**
* @description 设置DRACO文件的加载器
* @date 2019-04-17
* @param {*} dracoLoader
* @returns
*/
setDRACOLoader: function (dracoLoader) {
this.dracoLoader = dracoLoader;
return this;
},
/**
* @description 加载成功的分析方法
* @date 2019-04-17
* @param {*} data 加载出来的数据,对于模型来说,一般为arrayBuffer类型的
* @param {*} path 加载路径
* @param {*} onLoad 加载成功方法
* @param {*} onError 加载失败方法
* @returns
*/
parse: function (data, path, onLoad, onError) {
//新建内容变量和拓展变量数组
var content;
var extensions = {};
//判断data类型如果是string类型的直接赋值
if (typeof data === 'string') {
content = data;
} else {
//如果不是string类型,首先取出前四个判断是不是:"{"
var magic = THREE.LoaderUtils.decodeText(new Uint8Array(data, 0, 4));
//如果前四个是gltf,应该是glb格式的二进制文件,获得具体的数据
if (magic === BINARY_EXTENSION_HEADER_MAGIC) {
try {
extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data);
} catch (error) {
if (onError) onError(error);
return;
}
content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content;
} else {
//如果是正常的gltf就转换类型
content = THREE.LoaderUtils.decodeText(new Uint8Array(data));
}
}
//转换为json格式
var json = JSON.parse(content);
//各个gltf不一样,以下的格式加载就不属于模型的范畴了,加载的东西也是千奇百怪,不具体翻译了,可以对照THREE的gltf对照的看
if (json.asset === undefined || json.asset.version[0] < 2) {
if (onError) onError(new Error('THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.'));
return;
}
if (json.extensionsUsed) {
for (var i = 0; i < json.extensionsUsed.length; ++i) {
var extensionName = json.extensionsUsed[i];
var extensionsRequired = json.extensionsRequired || [];
switch (extensionName) {
case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
extensions[extensionName] = new GLTFLightsExtension(json);
break;
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[extensionName] = new GLTFMaterialsUnlitExtension(json);
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[extensionName] = new GLTFMaterialsPbrSpecularGlossinessExtension(json);
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader);
break;
case EXTENSIONS.MSFT_TEXTURE_DDS:
extensions[EXTENSIONS.MSFT_TEXTURE_DDS] = new GLTFTextureDDSExtension();
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] = new GLTFTextureTransformExtension(json);
break;
default:
if (extensionsRequired.indexOf(extensionName) >= 0) {
console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".');
}
}
}
}
var parser = new GLTFParser(json, extensions, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
manager: this.manager
});
parser.parse(function (scene, scenes, cameras, animations, json) {
var glTF = {
scene: scene,
scenes: scenes,
cameras: cameras,
animations: animations,
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData(extensions, glTF, json);
onLoad(glTF);
}, onError);
}
};
/* GLTFREGISTRY */
/**
* @description 创建一个在缓存中的注册函数
* @date 2019-04-17
* @returns
*/
function GLTFRegistry() {
var objects = {};
return {
get: function (key) {
return objects[key];
},
add: function (key, object) {
objects[key] = object;
},
remove: function (key) {
delete objects[key];
},
removeAll: function () {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
var EXTENSIONS = {
KHR_BINARY_GLTF: 'KHR_binary_glTF',
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
};
/**
* DDS Texture Extension
*
* Specification:
* https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
*
*/
/**
* @description dds图片的拓展
* @date 2019-04-17
*/
function GLTFTextureDDSExtension() {
if (!THREE.DDSLoader) {
throw new Error('THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader');
}
this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
this.ddsLoader = new THREE.DDSLoader();
}
/**
* Lights Extension
*
* Specification: PENDING
*/
/**
* @description 灯光的拓展,及获取
* @date 2019-04-17
* @param {*} json
*/
function GLTFLightsExtension(json) {
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
var extension = (json.extensions && json.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]) || {};
this.lightDefs = extension.lights || [];
}
/**
* @description 加载灯光
* @date 2019-04-17
* @param {*} lightIndex 灯光的下标
*/
GLTFLightsExtension.prototype.loadLight = function (lightIndex) {
var lightDef = this.lightDefs[lightIndex];
var lightNode;
var color = new THREE.Color(0xffffff);
if (lightDef.color !== undefined) color.fromArray(lightDef.color);
var range = lightDef.range !== undefined ? lightDef.range : 0;
switch (lightDef.type) {
case 'directional':
lightNode = new THREE.DirectionalLight(color);
lightNode.target.position.set(0, 0, -1);
lightNode.add(lightNode.target);
break;
case 'point':
lightNode = new THREE.PointLight(color);
lightNode.distance = range;
break;
case 'spot':
lightNode = new THREE.SpotLight(color);
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set(0, 0, -1);
lightNode.add(lightNode.target);
break;
default:
throw new Error('THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".');
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set(0, 0, 0);
lightNode.decay = 2;
if (lightDef.intensity !== undefined) lightNode.intensity = lightDef.intensity;
lightNode.name = lightDef.name || ('light_' + lightIndex);
return Promise.resolve(lightNode);
};
/**
* Unlit Materials Extension (pending)
*
* PR: https://github.com/KhronosGroup/glTF/pull/1163
*/
function GLTFMaterialsUnlitExtension(json) {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
GLTFMaterialsUnlitExtension.prototype.getMaterialType = function (material) {
return THREE.MeshBasicMaterial;
};
GLTFMaterialsUnlitExtension.prototype.extendParams = function (materialParams, material, parser) {
var pending = [];
materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
materialParams.opacity = 1.0;
var metallicRoughness = material.pbrMetallicRoughness;
if (metallicRoughness) {
if (Array.isArray(metallicRoughness.baseColorFactor)) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray(array);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture));
}
}
return Promise.all(pending);
};
/* BINARY EXTENSION */
var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF';
var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = {
JSON: 0x4E4F534A,
BIN: 0x004E4942
};
/**
* @description 加载二进制gltf格式的文件
* @date 2019-04-17
* @param {*} data 获得到数据
*/
function GLTFBinaryExtension(data) {
//设置名字为gltf二进制文件
this.name = EXTENSIONS.KHR_BINARY_GLTF;
//创建内容
this.content = null;
//
this.body = null;
//获得首视图,获得前12个字符组成的类型视图。
var headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH);
//获得头标识,不同的gltf会有不同的处理这里以three的为例
this.header = {
magic: THREE.LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))),
version: headerView.getUint32(4, true),
length: headerView.getUint32(8, true)
};
if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) {
throw new Error('THREE.GLTFLoader: Unsupported glTF-Binary header.');
} else if (this.header.version < 2.0) {
throw new Error('THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.');
}
//这块每个gltf都不太一样,不具体翻译了
var chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH);
var chunkIndex = 0;
//取数据
while (chunkIndex < chunkView.byteLength) {
var chunkLength = chunkView.getUint32(chunkIndex, true);
chunkIndex += 4;
var chunkType = chunkView.getUint32(chunkIndex, true);
chunkIndex += 4;
if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) {
var contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength);
this.content = THREE.LoaderUtils.decodeText(contentArray);
} else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) {
var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice(byteOffset, byteOffset + chunkLength);
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if (this.content === null) {
throw new Error('THREE.GLTFLoader: JSON content not found.');
}
}
/**
* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/pull/874
*/
function GLTFDracoMeshCompressionExtension(json, dracoLoader) {
if (!dracoLoader) {
throw new Error('THREE.GLTFLoader: No DRACOLoader instance provided.');
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
THREE.DRACOLoader.getDecoderModule();
}
GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function (primitive, parser) {
var json = this.json;
var dracoLoader = this.dracoLoader;
var bufferViewIndex = primitive.extensions[this.name].bufferView;
var gltfAttributeMap = primitive.extensions[this.name].attributes;
var threeAttributeMap = {};
var attributeNormalizedMap = {};
var attributeTypeMap = {};
for (var attributeName in gltfAttributeMap) {
if (!(attributeName in ATTRIBUTES)) continue;
threeAttributeMap[ATTRIBUTES[attributeName]] = gltfAttributeMap[attributeName];
}
for (attributeName in primitive.attributes) {
if (ATTRIBUTES[attributeName] !== undefined && gltfAttributeMap[attributeName] !== undefined) {
var accessorDef = json.accessors[primitive.attributes[attributeName]];
var componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
attributeTypeMap[ATTRIBUTES[attributeName]] = componentType;
attributeNormalizedMap[ATTRIBUTES[attributeName]] = accessorDef.normalized === true;
}
}
return parser.getDependency('bufferView', bufferViewIndex).then(function (bufferView) {
return new Promise(function (resolve) {
dracoLoader.decodeDracoFile(bufferView, function (geometry) {
for (var attributeName in geometry.attributes) {
var attribute = geometry.attributes[attributeName];
var normalized = attributeNormalizedMap[attributeName];
if (normalized !== undefined) attribute.normalized = normalized;
}
resolve(geometry);
}, threeAttributeMap, attributeTypeMap);
});
});
};
/**
* Texture Transform Extension
*
* Specification:
*/
function GLTFTextureTransformExtension(json) {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
GLTFTextureTransformExtension.prototype.extendTexture = function (texture, transform) {
texture = texture.clone();
if (transform.offset !== undefined) {
texture.offset.fromArray(transform.offset);
}
if (transform.rotation !== undefined) {
texture.rotation = transform.rotation;
}
if (transform.scale !== undefined) {
texture.repeat.fromArray(transform.scale);
}
if (transform.texCoord !== undefined) {
console.warn('THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.');
}
texture.needsUpdate = true;
return texture;
};
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/
/**
* @description 拓展材质的shader啥的
* @date 2019-04-17
* @returns
*/
function GLTFMaterialsPbrSpecularGlossinessExtension() {
return {
name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,
specularGlossinessParams: [
'color',
'map',
'lightMap',
'lightMapIntensity',
'aoMap',
'aoMapIntensity',
'emissive',
'emissiveIntensity',
'emissiveMap',
'bumpMap',
'bumpScale',
'normalMap',
'displacementMap',
'displacementScale',
'displacementBias',
'specularMap',
'specular',
'glossinessMap',
'glossiness',
'alphaMap',
'envMap',
'envMapIntensity',
'refractionRatio',
],
getMaterialType: function () {
return THREE.ShaderMaterial;
},
extendParams: function (params, material, parser) {
var pbrSpecularGlossiness = material.extensions[this.name];
var shader = THREE.ShaderLib['standard'];
var uniforms = THREE.UniformsUtils.clone(shader.uniforms);
var specularMapParsFragmentChunk = [
'#ifdef USE_SPECULARMAP',
' uniform sampler2D specularMap;',
'#endif'
].join('\n');
var glossinessMapParsFragmentChunk = [
'#ifdef USE_GLOSSINESSMAP',
' uniform sampler2D glossinessMap;',
'#endif'
].join('\n');
var specularMapFragmentChunk = [
'vec3 specularFactor = specular;',
'#ifdef USE_SPECULARMAP',
' vec4 texelSpecular = texture2D( specularMap, vUv );',
' texelSpecular = sRGBToLinear( texelSpecular );',
' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
' specularFactor *= texelSpecular.rgb;',
'#endif'
].join('\n');
var glossinessMapFragmentChunk = [
'float glossinessFactor = glossiness;',
'#ifdef USE_GLOSSINESSMAP',
' vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
' glossinessFactor *= texelGlossiness.a;',
'#endif'
].join('\n');
var lightPhysicalFragmentChunk = [
'PhysicalMaterial material;',
'material.diffuseColor = diffuseColor.rgb;',
'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );',
'material.specularColor = specularFactor.rgb;',
].join('\n');
var fragmentShader = shader.fragmentShader
.replace('uniform float roughness;', 'uniform vec3 specular;')
.replace('uniform float metalness;', 'uniform float glossiness;')
.replace('#include ' , specularMapParsFragmentChunk)
.replace('#include ' , glossinessMapParsFragmentChunk)
.replace('#include ' , specularMapFragmentChunk)
.replace('#include ' , glossinessMapFragmentChunk)
.replace('#include ' , lightPhysicalFragmentChunk);
delete uniforms.roughness;
delete uniforms.metalness;
delete uniforms.roughnessMap;
delete uniforms.metalnessMap;
uniforms.specular = {
value: new THREE.Color().setHex(0x111111)
};
uniforms.glossiness = {
value: 0.5
};
uniforms.specularMap = {
value: null
};
uniforms.glossinessMap = {
value: null
};
params.vertexShader = shader.vertexShader;
params.fragmentShader = fragmentShader;
params.uniforms = uniforms;
params.defines = {
'STANDARD': ''
};
params.color = new THREE.Color(1.0, 1.0, 1.0);
params.opacity = 1.0;
var pending = [];
if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) {
var array = pbrSpecularGlossiness.diffuseFactor;
params.color.fromArray(array);
params.opacity = array[3];
}
if (pbrSpecularGlossiness.diffuseTexture !== undefined) {
pending.push(parser.assignTexture(params, 'map', pbrSpecularGlossiness.diffuseTexture));
}
params.emissive = new THREE.Color(0.0, 0.0, 0.0);
params.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
params.specular = new THREE.Color(1.0, 1.0, 1.0);
if (Array.isArray(pbrSpecularGlossiness.specularFactor)) {
params.specular.fromArray(pbrSpecularGlossiness.specularFactor);
}
if (pbrSpecularGlossiness.specularGlossinessTexture !== undefined) {
var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
pending.push(parser.assignTexture(params, 'glossinessMap', specGlossMapDef));
pending.push(parser.assignTexture(params, 'specularMap', specGlossMapDef));
}
return Promise.all(pending);
},
createMaterial: function (params) {
// setup material properties based on MeshStandardMaterial for Specular-Glossiness
var material = new THREE.ShaderMaterial({
defines: params.defines,
vertexShader: params.vertexShader,
fragmentShader: params.fragmentShader,
uniforms: params.uniforms,
fog: true,
lights: true,
opacity: params.opacity,
transparent: params.transparent
});
material.isGLTFSpecularGlossinessMaterial = true;
material.color = params.color;
material.map = params.map === undefined ? null : params.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = params.aoMap === undefined ? null : params.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = params.emissive;
material.emissiveIntensity = 1.0;
material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap;
material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap;
material.bumpScale = 1;
material.normalMap = params.normalMap === undefined ? null : params.normalMap;
if (params.normalScale) material.normalScale = params.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap = params.specularMap === undefined ? null : params.specularMap;
material.specular = params.specular;
material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap;
material.glossiness = params.glossiness;
material.alphaMap = null;
material.envMap = params.envMap === undefined ? null : params.envMap;
material.envMapIntensity = 1.0;
material.refractionRatio = 0.98;
material.extensions.derivatives = true;
return material;
},
/**
* Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can
* copy only properties it knows about or inherits, and misses many properties that would
* normally be defined by MeshStandardMaterial.
*
* This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of
* loading a glTF model, but cloning later (e.g. by the user) would require these changes
* AND also updating `.onBeforeRender` on the parent mesh.
*
* @param {THREE.ShaderMaterial} source
* @return {THREE.ShaderMaterial}
*/
cloneMaterial: function (source) {
var target = source.clone();
target.isGLTFSpecularGlossinessMaterial = true;
var params = this.specularGlossinessParams;
for (var i = 0, il = params.length; i < il; i++) {
target[params[i]] = source[params[i]];
}
return target;
},
// Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer.
refreshUniforms: function (renderer, scene, camera, geometry, material, group) {
if (material.isGLTFSpecularGlossinessMaterial !== true) {
return;
}
var uniforms = material.uniforms;
var defines = material.defines;
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value.copy(material.color);
uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if (material.map) {
uvScaleMap = material.map;
} else if (material.specularMap) {
uvScaleMap = material.specularMap;
} else if (material.displacementMap) {
uvScaleMap = material.displacementMap;
} else if (material.normalMap) {
uvScaleMap = material.normalMap;
} else if (material.bumpMap) {
uvScaleMap = material.bumpMap;
} else if (material.glossinessMap) {
uvScaleMap = material.glossinessMap;
} else if (material.alphaMap) {
uvScaleMap = material.alphaMap;
} else if (material.emissiveMap) {
uvScaleMap = material.emissiveMap;
}
if (uvScaleMap !== undefined) {
// backwards compatibility
if (uvScaleMap.isWebGLRenderTarget) {
uvScaleMap = uvScaleMap.texture;
}
if (uvScaleMap.matrixAutoUpdate === true) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
}
if (material.envMap) {
uniforms.envMap.value = material.envMap;
uniforms.envMapIntensity.value = material.envMapIntensity;
// don't flip CubeTexture envMaps, flip everything else:
// WebGLRenderTargetCube will be flipped for backwards compatibility
// WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? -1 : 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.maxMipLevel.value = renderer.properties.get(material.envMap).__maxMipLevel;
}
uniforms.specular.value.copy(material.specular);
uniforms.glossiness.value = material.glossiness;
uniforms.glossinessMap.value = material.glossinessMap;
uniforms.emissiveMap.value = material.emissiveMap;
uniforms.bumpMap.value = material.bumpMap;
uniforms.normalMap.value = material.normalMap;
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
if (uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined) {
defines.USE_GLOSSINESSMAP = '';
// set USE_ROUGHNESSMAP to enable vUv
defines.USE_ROUGHNESSMAP = '';
}
if (uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined) {
delete defines.USE_GLOSSINESSMAP;
delete defines.USE_ROUGHNESSMAP;
}
}
};
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
function GLTFCubicSplineInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
THREE.Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);
}
GLTFCubicSplineInterpolant.prototype = Object.create(THREE.Interpolant.prototype);
GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;
GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function (index) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
var result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for (var i = 0; i !== valueSize; i++) {
result[i] = values[offset + i];
}
return result;
};
GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.interpolate_ = function (i1, t0, t, t1) {
var result = this.resultBuffer;
var values = this.sampleValues;
var stride = this.valueSize;
var stride2 = stride * 2;
var stride3 = stride * 3;
var td = t1 - t0;
var p = (t - t0) / td;
var pp = p * p;
var ppp = pp * p;
var offset1 = i1 * stride3;
var offset0 = offset1 - stride3;
var s2 = -2 * ppp + 3 * pp;
var s3 = ppp - pp;
var s0 = 1 - s2;
var s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for (var i = 0; i !== stride; i++) {
var p0 = values[offset0 + i + stride]; // splineVertex_k
var m0 = values[offset0 + i + stride2] * td; // outTangent_k * (t_k+1 - t_k)
var p1 = values[offset1 + i + stride]; // splineVertex_k+1
var m1 = values[offset1 + i] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
};
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_TYPE = {
5126: Number,
//35674: THREE.Matrix2,
35675: THREE.Matrix3,
35676: THREE.Matrix4,
35664: THREE.Vector2,
35665: THREE.Vector3,
35666: THREE.Vector4,
35678: THREE.Texture
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: THREE.NearestFilter,
9729: THREE.LinearFilter,
9984: THREE.NearestMipMapNearestFilter,
9985: THREE.LinearMipMapNearestFilter,
9986: THREE.NearestMipMapLinearFilter,
9987: THREE.LinearMipMapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: THREE.ClampToEdgeWrapping,
33648: THREE.MirroredRepeatWrapping,
10497: THREE.RepeatWrapping
};
var WEBGL_SIDES = {
1028: THREE.BackSide, // Culling front
1029: THREE.FrontSide // Culling back
//1032: THREE.NoSide // Culling front and back, what to do?
};
var WEBGL_DEPTH_FUNCS = {
512: THREE.NeverDepth,
513: THREE.LessDepth,
514: THREE.EqualDepth,
515: THREE.LessEqualDepth,
516: THREE.GreaterEqualDepth,
517: THREE.NotEqualDepth,
518: THREE.GreaterEqualDepth,
519: THREE.AlwaysDepth
};
var WEBGL_BLEND_EQUATIONS = {
32774: THREE.AddEquation,
32778: THREE.SubtractEquation,
32779: THREE.ReverseSubtractEquation
};
var WEBGL_BLEND_FUNCS = {
0: THREE.ZeroFactor,
1: THREE.OneFactor,
768: THREE.SrcColorFactor,
769: THREE.OneMinusSrcColorFactor,
770: THREE.SrcAlphaFactor,
771: THREE.OneMinusSrcAlphaFactor,
772: THREE.DstAlphaFactor,
773: THREE.OneMinusDstAlphaFactor,
774: THREE.DstColorFactor,
775: THREE.OneMinusDstColorFactor,
776: THREE.SrcAlphaSaturateFactor
// The followings are not supported by Three.js yet
//32769: CONSTANT_COLOR,
//32770: ONE_MINUS_CONSTANT_COLOR,
//32771: CONSTANT_ALPHA,
//32772: ONE_MINUS_CONSTANT_COLOR
};
var WEBGL_TYPE_SIZES = {
'SCALAR': 1,
'VEC2': 2,
'VEC3': 3,
'VEC4': 4,
'MAT2': 4,
'MAT3': 9,
'MAT4': 16
};
var ATTRIBUTES = {
POSITION: 'position',
NORMAL: 'normal',
TANGENT: 'tangent',
TEXCOORD_0: 'uv',
TEXCOORD_1: 'uv2',
COLOR_0: 'color',
WEIGHTS_0: 'skinWeight',
JOINTS_0: 'skinIndex',
};
var PATH_PROPERTIES = {
scale: 'scale',
translation: 'position',
rotation: 'quaternion',
weights: 'morphTargetInfluences'
};
var INTERPOLATION = {
CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE.
// KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout,
// using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization.
// See KeyframeTrack.optimize() for the detail.
LINEAR: THREE.InterpolateLinear,
STEP: THREE.InterpolateDiscrete
};
var STATES_ENABLES = {
2884: 'CULL_FACE',
2929: 'DEPTH_TEST',
3042: 'BLEND',
3089: 'SCISSOR_TEST',
32823: 'POLYGON_OFFSET_FILL',
32926: 'SAMPLE_ALPHA_TO_COVERAGE'
};
var ALPHA_MODES = {
OPAQUE: 'OPAQUE',
MASK: 'MASK',
BLEND: 'BLEND'
};
var MIME_TYPE_FORMATS = {
'image/png': THREE.RGBAFormat,
'image/jpeg': THREE.RGBFormat
};
/* UTILITY FUNCTIONS */
function resolveURL(url, path) {
// Invalid URL
if (typeof url !== 'string' || url === '') return '';
// Absolute URL http://,https://,//
if (/^(https?:)?\/\//i.test(url)) return url;
// Data URI
if (/^data:.*,.*$/i.test(url)) return url;
// Blob URL
if (/^blob:.*$/i.test(url)) return url;
// Relative URL
return path + url;
}
var defaultMaterial;
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial() {
defaultMaterial = defaultMaterial || new THREE.MeshStandardMaterial({
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: THREE.FrontSide
});
return defaultMaterial;
}
function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) {
// Add unknown glTF extensions to an object's userData.
for (var name in objectDef.extensions) {
if (knownExtensions[name] === undefined) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[name] = objectDef.extensions[name];
}
}
}
/**
* @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/
function assignExtrasToUserData(object, gltfDef) {
if (gltfDef.extras !== undefined) {
if (typeof gltfDef.extras === 'object') {
object.userData = gltfDef.extras;
} else {
console.warn('THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras);
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {THREE.BufferGeometry} geometry
* @param {Array} targets
* @param {GLTFParser} parser
* @return {Promise}
*/
function addMorphTargets(geometry, targets, parser) {
var hasMorphPosition = false;
var hasMorphNormal = false;
for (var i = 0, il = targets.length; i < il; i++) {
var target = targets[i];
if (target.POSITION !== undefined) hasMorphPosition = true;
if (target.NORMAL !== undefined) hasMorphNormal = true;
if (hasMorphPosition && hasMorphNormal) break;
}
if (!hasMorphPosition && !hasMorphNormal) return Promise.resolve(geometry);
var pendingPositionAccessors = [];
var pendingNormalAccessors = [];
for (var i = 0, il = targets.length; i < il; i++) {
var target = targets[i];
if (hasMorphPosition) {
// TODO: Error-prone use of a callback inside a loop.
var accessor = target.POSITION !== undefined ?
parser.getDependency('accessor', target.POSITION)
.then(function (accessor) {
// Cloning not to pollute original accessor below
return cloneBufferAttribute(accessor);
}) :
geometry.attributes.position;
pendingPositionAccessors.push(accessor);
}
if (hasMorphNormal) {
// TODO: Error-prone use of a callback inside a loop.
var accessor = target.NORMAL !== undefined ?
parser.getDependency('accessor', target.NORMAL)
.then(function (accessor) {
return cloneBufferAttribute(accessor);
}) :
geometry.attributes.normal;
pendingNormalAccessors.push(accessor);
}
}
return Promise.all([
Promise.all(pendingPositionAccessors),
Promise.all(pendingNormalAccessors)
]).then(function (accessors) {
var morphPositions = accessors[0];
var morphNormals = accessors[1];
for (var i = 0, il = targets.length; i < il; i++) {
var target = targets[i];
var attributeName = 'morphTarget' + i;
if (hasMorphPosition) {
// Three.js morph position is absolute value. The formula is
// basePosition
// + weight0 * ( morphPosition0 - basePosition )
// + weight1 * ( morphPosition1 - basePosition )
// ...
// while the glTF one is relative
// basePosition
// + weight0 * glTFmorphPosition0
// + weight1 * glTFmorphPosition1
// ...
// then we need to convert from relative to absolute here.
if (target.POSITION !== undefined) {
var positionAttribute = morphPositions[i];
positionAttribute.name = attributeName;
var position = geometry.attributes.position;
for (var j = 0, jl = positionAttribute.count; j < jl; j++) {
positionAttribute.setXYZ(
j,
positionAttribute.getX(j) + position.getX(j),
positionAttribute.getY(j) + position.getY(j),
positionAttribute.getZ(j) + position.getZ(j)
);
}
}
}
if (hasMorphNormal) {
// see target.POSITION's comment
if (target.NORMAL !== undefined) {
var normalAttribute = morphNormals[i];
normalAttribute.name = attributeName;
var normal = geometry.attributes.normal;
for (var j = 0, jl = normalAttribute.count; j < jl; j++) {
normalAttribute.setXYZ(
j,
normalAttribute.getX(j) + normal.getX(j),
normalAttribute.getY(j) + normal.getY(j),
normalAttribute.getZ(j) + normal.getZ(j)
);
}
}
}
}
if (hasMorphPosition) geometry.morphAttributes.position = morphPositions;
if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals;
return geometry;
});
}
/**
* @param {THREE.Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets(mesh, meshDef) {
mesh.updateMorphTargets();
if (meshDef.weights !== undefined) {
for (var i = 0, il = meshDef.weights.length; i < il; i++) {
mesh.morphTargetInfluences[i] = meshDef.weights[i];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) {
var targetNames = meshDef.extras.targetNames;
if (mesh.morphTargetInfluences.length === targetNames.length) {
mesh.morphTargetDictionary = {};
for (var i = 0, il = targetNames.length; i < il; i++) {
mesh.morphTargetDictionary[targetNames[i]] = i;
}
} else {
console.warn('THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.');
}
}
}
function isObjectEqual(a, b) {
if (Object.keys(a).length !== Object.keys(b).length) return false;
for (var key in a) {
if (a[key] !== b[key]) return false;
}
return true;
}
function createPrimitiveKey(primitiveDef) {
var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION];
var geometryKey;
if (dracoExtension) {
geometryKey = 'draco:' + dracoExtension.bufferView +
':' + dracoExtension.indices +
':' + createAttributesKey(dracoExtension.attributes);
} else {
geometryKey = primitiveDef.indices + ':' + createAttributesKey(primitiveDef.attributes) + ':' + primitiveDef.mode;
}
return geometryKey;
}
function createAttributesKey(attributes) {
var attributesKey = '';
var keys = Object.keys(attributes).sort();
for (var i = 0, il = keys.length; i < il; i++) {
attributesKey += keys[i] + ':' + attributes[keys[i]] + ';';
}
return attributesKey;
}
function cloneBufferAttribute(attribute) {
if (attribute.isInterleavedBufferAttribute) {
var count = attribute.count;
var itemSize = attribute.itemSize;
var array = attribute.array.slice(0, count * itemSize);
for (var i = 0, j = 0; i < count; ++i) {
array[j++] = attribute.getX(i);
if (itemSize >= 2) array[j++] = attribute.getY(i);
if (itemSize >= 3) array[j++] = attribute.getZ(i);
if (itemSize >= 4) array[j++] = attribute.getW(i);
}
return new THREE.BufferAttribute(array, itemSize, attribute.normalized);
}
return attribute.clone();
}
/* GLTF PARSER */
function GLTFParser(json, extensions, options) {
this.json = json || {};
this.extensions = extensions || {};
this.options = options || {};
// loader object cache
this.cache = new GLTFRegistry();
// BufferGeometry caching
this.primitiveCache = {};
this.textureLoader = new THREE.TextureLoader(this.options.manager);
this.textureLoader.setCrossOrigin(this.options.crossOrigin);
this.fileLoader = new THREE.FileLoader(this.options.manager);
this.fileLoader.setResponseType('arraybuffer');
}
GLTFParser.prototype.parse = function (onLoad, onError) {
var json = this.json;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this.markDefs();
// Fire the callback on complete
this.getMultiDependencies([
'scene',
'animation',
'camera'
]).then(function (dependencies) {
var scenes = dependencies.scenes || [];
var scene = scenes[json.scene || 0];
var animations = dependencies.animations || [];
var cameras = dependencies.cameras || [];
onLoad(scene, scenes, cameras, animations, json);
}).catch(onError);
};
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
GLTFParser.prototype.markDefs = function () {
var nodeDefs = this.json.nodes || [];
var skinDefs = this.json.skins || [];
var meshDefs = this.json.meshes || [];
var meshReferences = {};
var meshUses = {};
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for (var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) {
var joints = skinDefs[skinIndex].joints;
for (var i = 0, il = joints.length; i < il; i++) {
nodeDefs[joints[i]].isBone = true;
}
}
// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
// avoid having more than one THREE.Mesh with the same name, count
// references and rename instances below.
//
// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
for (var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) {
var nodeDef = nodeDefs[nodeIndex];
if (nodeDef.mesh !== undefined) {
if (meshReferences[nodeDef.mesh] === undefined) {
meshReferences[nodeDef.mesh] = meshUses[nodeDef.mesh] = 0;
}
meshReferences[nodeDef.mesh]++;
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if (nodeDef.skin !== undefined) {
meshDefs[nodeDef.mesh].isSkinnedMesh = true;
}
}
}
this.json.meshReferences = meshReferences;
this.json.meshUses = meshUses;
};
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise}
*/
GLTFParser.prototype.getDependency = function (type, index) {
var cacheKey = type + ':' + index;
var dependency = this.cache.get(cacheKey);
if (!dependency) {
switch (type) {
case 'scene':
dependency = this.loadScene(index);
break;
case 'node':
dependency = this.loadNode(index);
break;
case 'mesh':
dependency = this.loadMesh(index);
break;
case 'accessor':
dependency = this.loadAccessor(index);
break;
case 'bufferView':
dependency = this.loadBufferView(index);
break;
case 'buffer':
dependency = this.loadBuffer(index);
break;
case 'material':
dependency = this.loadMaterial(index);
break;
case 'texture':
dependency = this.loadTexture(index);
break;
case 'skin':
dependency = this.loadSkin(index);
break;
case 'animation':
dependency = this.loadAnimation(index);
break;
case 'camera':
dependency = this.loadCamera(index);
break;
case 'light':
dependency = this.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].loadLight(index);
break;
default:
throw new Error('Unknown type: ' + type);
}
this.cache.add(cacheKey, dependency);
}
return dependency;
};
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise>}
*/
GLTFParser.prototype.getDependencies = function (type) {
var dependencies = this.cache.get(type);
if (!dependencies) {
var parser = this;
var defs = this.json[type + (type === 'mesh' ? 'es' : 's')] || [];
dependencies = Promise.all(defs.map(function (def, index) {
return parser.getDependency(type, index);
}));
this.cache.add(type, dependencies);
}
return dependencies;
};
/**
* Requests all multiple dependencies of the specified types asynchronously, with caching.
* @param {Array} types
* @return {Promise
GLTFParser.prototype.getMultiDependencies = function (types) {
var results = {};
var pending = [];
for (var i = 0, il = types.length; i < il; i++) {
var type = types[i];
var value = this.getDependencies(type);
// TODO: Error-prone use of a callback inside a loop.
value = value.then(function (key, value) {
results[key] = value;
}.bind(this, type + (type === 'mesh' ? 'es' : 's')));
pending.push(value);
}
return Promise.all(pending).then(function () {
return results;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise}
*/
GLTFParser.prototype.loadBuffer = function (bufferIndex) {
var bufferDef = this.json.buffers[bufferIndex];
var loader = this.fileLoader;
if (bufferDef.type && bufferDef.type !== 'arraybuffer') {
throw new Error('THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.');
}
// If present, GLB container is required to be the first buffer.
if (bufferDef.uri === undefined && bufferIndex === 0) {
return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body);
}
var options = this.options;
return new Promise(function (resolve, reject) {
loader.load(resolveURL(bufferDef.uri, options.path), resolve, undefined, function () {
reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".'));
});
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise}
*/
GLTFParser.prototype.loadBufferView = function (bufferViewIndex) {
var bufferViewDef = this.json.bufferViews[bufferViewIndex];
return this.getDependency('buffer', bufferViewDef.buffer).then(function (buffer) {
var byteLength = bufferViewDef.byteLength || 0;
var byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice(byteOffset, byteOffset + byteLength);
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise}
*/
GLTFParser.prototype.loadAccessor = function (accessorIndex) {
var parser = this;
var json = this.json;
var accessorDef = this.json.accessors[accessorIndex];
if (accessorDef.bufferView === undefined && accessorDef.sparse === undefined) {
// Ignore empty accessors, which may be used to declare runtime
// information about attributes coming from another source (e.g. Draco
// compression extension).
return Promise.resolve(null);
}
var pendingBufferViews = [];
if (accessorDef.bufferView !== undefined) {
pendingBufferViews.push(this.getDependency('bufferView', accessorDef.bufferView));
} else {
pendingBufferViews.push(null);
}
if (accessorDef.sparse !== undefined) {
pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.indices.bufferView));
pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.values.bufferView));
}
return Promise.all(pendingBufferViews).then(function (bufferViews) {
var bufferView = bufferViews[0];
var itemSize = WEBGL_TYPE_SIZES[accessorDef.type];
var TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
var elementBytes = TypedArray.BYTES_PER_ELEMENT;
var itemBytes = elementBytes * itemSize;
var byteOffset = accessorDef.byteOffset || 0;
var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[accessorDef.bufferView].byteStride : undefined;
var normalized = accessorDef.normalized === true;
var array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if (byteStride && byteStride !== itemBytes) {
var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType;
var ib = parser.cache.get(ibCacheKey);
if (!ib) {
// Use the full buffer if it's interleaved.
array = new TypedArray(bufferView);
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new THREE.InterleavedBuffer(array, byteStride / elementBytes);
parser.cache.add(ibCacheKey, ib);
}
bufferAttribute = new THREE.InterleavedBufferAttribute(ib, itemSize, byteOffset / elementBytes, normalized);
} else {
if (bufferView === null) {
array = new TypedArray(accessorDef.count * itemSize);
} else {
array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize);
}
bufferAttribute = new THREE.BufferAttribute(array, itemSize, normalized);
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if (accessorDef.sparse !== undefined) {
var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
var TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType];
var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
var sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices);
var sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize);
if (bufferView !== null) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute.setArray(bufferAttribute.array.slice());
}
for (var i = 0, il = sparseIndices.length; i < il; i++) {
var index = sparseIndices[i];
bufferAttribute.setX(index, sparseValues[i * itemSize]);
if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]);
if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]);
if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]);
if (itemSize >= 5) throw new Error('THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.');
}
}
return bufferAttribute;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
* @param {number} textureIndex
* @return {Promise}
*/
GLTFParser.prototype.loadTexture = function (textureIndex) {
var parser = this;
var json = this.json;
var options = this.options;
var textureLoader = this.textureLoader;
var URL = window.URL || window.webkitURL;
var textureDef = json.textures[textureIndex];
var textureExtensions = textureDef.extensions || {};
var source;
if (textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]) {
source = json.images[textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS].source];
} else {
source = json.images[textureDef.source];
}
var sourceURI = source.uri;
var isObjectURL = false;
if (source.bufferView !== undefined) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency('bufferView', source.bufferView).then(function (bufferView) {
isObjectURL = true;
var blob = new Blob([bufferView], {
type: source.mimeType
});
sourceURI = URL.createObjectURL(blob);
return sourceURI;
});
}
return Promise.resolve(sourceURI).then(function (sourceURI) {
// Load Texture resource.
var loader = THREE.Loader.Handlers.get(sourceURI);
if (!loader) {
loader = textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS] ?
parser.extensions[EXTENSIONS.MSFT_TEXTURE_DDS].ddsLoader :
textureLoader;
}
return new Promise(function (resolve, reject) {
loader.load(resolveURL(sourceURI, options.path), resolve, undefined, reject);
});
}).then(function (texture) {
// Clean up resources and configure Texture.
if (isObjectURL === true) {
URL.revokeObjectURL(sourceURI);
}
texture.flipY = false;
if (textureDef.name !== undefined) texture.name = textureDef.name;
// Ignore unknown mime types, like DDS files.
if (source.mimeType in MIME_TYPE_FORMATS) {
texture.format = MIME_TYPE_FORMATS[source.mimeType];
}
var samplers = json.samplers || {};
var sampler = samplers[textureDef.sampler] || {};
texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || THREE.LinearFilter;
texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || THREE.LinearMipMapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || THREE.RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || THREE.RepeatWrapping;
return texture;
});
};
/**
* Asynchronously assigns a texture to the given material parameters.
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @return {Promise}
*/
GLTFParser.prototype.assignTexture = function (materialParams, mapName, mapDef) {
var parser = this;
return this.getDependency('texture', mapDef.index).then(function (texture) {
switch (mapName) {
case 'aoMap':
case 'emissiveMap':
case 'metalnessMap':
case 'normalMap':
case 'roughnessMap':
texture.format = THREE.RGBFormat;
break;
}
if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) {
var transform = mapDef.extensions !== undefined ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : undefined;
if (transform) {
texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform);
}
}
materialParams[mapName] = texture;
});
};
/**
* Assigns final material to a Mesh, Line, or Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accomodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
* @param {THREE.Object3D} mesh Mesh, Line, or Points instance.
*/
GLTFParser.prototype.assignFinalMaterial = function (mesh) {
var geometry = mesh.geometry;
var material = mesh.material;
var extensions = this.extensions;
var useVertexTangents = geometry.attributes.tangent !== undefined;
var useVertexColors = geometry.attributes.color !== undefined;
var useFlatShading = geometry.attributes.normal === undefined;
var useSkinning = mesh.isSkinnedMesh === true;
var useMorphTargets = Object.keys(geometry.morphAttributes).length > 0;
var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;
if (mesh.isPoints) {
var cacheKey = 'PointsMaterial:' + material.uuid;
var pointsMaterial = this.cache.get(cacheKey);
if (!pointsMaterial) {
pointsMaterial = new THREE.PointsMaterial();
THREE.Material.prototype.copy.call(pointsMaterial, material);
pointsMaterial.color.copy(material.color);
pointsMaterial.map = material.map;
pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet
this.cache.add(cacheKey, pointsMaterial);
}
material = pointsMaterial;
} else if (mesh.isLine) {
var cacheKey = 'LineBasicMaterial:' + material.uuid;
var lineMaterial = this.cache.get(cacheKey);
if (!lineMaterial) {
lineMaterial = new THREE.LineBasicMaterial();
THREE.Material.prototype.copy.call(lineMaterial, material);
lineMaterial.color.copy(material.color);
lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet
this.cache.add(cacheKey, lineMaterial);
}
material = lineMaterial;
}
// Clone the material if it will be modified
if (useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets) {
var cacheKey = 'ClonedMaterial:' + material.uuid + ':';
if (material.isGLTFSpecularGlossinessMaterial) cacheKey += 'specular-glossiness:';
if (useSkinning) cacheKey += 'skinning:';
if (useVertexTangents) cacheKey += 'vertex-tangents:';
if (useVertexColors) cacheKey += 'vertex-colors:';
if (useFlatShading) cacheKey += 'flat-shading:';
if (useMorphTargets) cacheKey += 'morph-targets:';
if (useMorphNormals) cacheKey += 'morph-normals:';
var cachedMaterial = this.cache.get(cacheKey);
if (!cachedMaterial) {
cachedMaterial = material.isGLTFSpecularGlossinessMaterial ?
extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].cloneMaterial(material) :
material.clone();
if (useSkinning) cachedMaterial.skinning = true;
if (useVertexTangents) cachedMaterial.vertexTangents = true;
if (useVertexColors) cachedMaterial.vertexColors = THREE.VertexColors;
if (useFlatShading) cachedMaterial.flatShading = true;
if (useMorphTargets) cachedMaterial.morphTargets = true;
if (useMorphNormals) cachedMaterial.morphNormals = true;
this.cache.add(cacheKey, cachedMaterial);
}
material = cachedMaterial;
}
// workarounds for mesh and geometry
if (material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined) {
console.log('THREE.GLTFLoader: Duplicating UVs to support aoMap.');
geometry.addAttribute('uv2', new THREE.BufferAttribute(geometry.attributes.uv.array, 2));
}
if (material.isGLTFSpecularGlossinessMaterial) {
// for GLTFSpecularGlossinessMaterial(ShaderMaterial) uniforms runtime update
mesh.onBeforeRender = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].refreshUniforms;
}
mesh.material = material;
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
* @param {number} materialIndex
* @return {Promise}
*/
GLTFParser.prototype.loadMaterial = function (materialIndex) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
var materialDef = json.materials[materialIndex];
var materialType;
var materialParams = {};
var materialExtensions = materialDef.extensions || {};
var pending = [];
if (materialExtensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]) {
var sgExtension = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS];
materialType = sgExtension.getMaterialType(materialDef);
pending.push(sgExtension.extendParams(materialParams, materialDef, parser));
} else if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) {
var kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT];
materialType = kmuExtension.getMaterialType(materialDef);
pending.push(kmuExtension.extendParams(materialParams, materialDef, parser));
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
materialType = THREE.MeshStandardMaterial;
var metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
materialParams.opacity = 1.0;
if (Array.isArray(metallicRoughness.baseColorFactor)) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray(array);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture));
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if (metallicRoughness.metallicRoughnessTexture !== undefined) {
pending.push(parser.assignTexture(materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture));
pending.push(parser.assignTexture(materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture));
}
}
if (materialDef.doubleSided === true) {
materialParams.side = THREE.DoubleSide;
}
var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if (alphaMode === ALPHA_MODES.BLEND) {
materialParams.transparent = true;
} else {
materialParams.transparent = false;
if (alphaMode === ALPHA_MODES.MASK) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if (materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, 'normalMap', materialDef.normalTexture));
materialParams.normalScale = new THREE.Vector2(1, 1);
if (materialDef.normalTexture.scale !== undefined) {
materialParams.normalScale.set(materialDef.normalTexture.scale, materialDef.normalTexture.scale);
}
}
if (materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, 'aoMap', materialDef.occlusionTexture));
if (materialDef.occlusionTexture.strength !== undefined) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if (materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) {
materialParams.emissive = new THREE.Color().fromArray(materialDef.emissiveFactor);
}
if (materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, 'emissiveMap', materialDef.emissiveTexture));
}
return Promise.all(pending).then(function () {
var material;
if (materialType === THREE.ShaderMaterial) {
material = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].createMaterial(materialParams);
} else {
material = new materialType(materialParams);
}
if (materialDef.name !== undefined) material.name = materialDef.name;
// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
if (material.map) material.map.encoding = THREE.sRGBEncoding;
if (material.emissiveMap) material.emissiveMap.encoding = THREE.sRGBEncoding;
if (material.specularMap) material.specularMap.encoding = THREE.sRGBEncoding;
assignExtrasToUserData(material, materialDef);
if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef);
return material;
});
};
/**
* @param {THREE.BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
* @return {Promise}
*/
function addPrimitiveAttributes(geometry, primitiveDef, parser) {
var attributes = primitiveDef.attributes;
var pending = [];
function assignAttributeAccessor(accessorIndex, attributeName) {
return parser.getDependency('accessor', accessorIndex)
.then(function (accessor) {
geometry.addAttribute(attributeName, accessor);
});
}
for (var gltfAttributeName in attributes) {
var threeAttributeName = ATTRIBUTES[gltfAttributeName];
if (!threeAttributeName) continue;
// Skip attributes already provided by e.g. Draco extension.
if (threeAttributeName in geometry.attributes) continue;
pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName));
}
if (primitiveDef.indices !== undefined && !geometry.index) {
var accessor = parser.getDependency('accessor', primitiveDef.indices).then(function (accessor) {
geometry.setIndex(accessor);
});
pending.push(accessor);
}
assignExtrasToUserData(geometry, primitiveDef);
return Promise.all(pending).then(function () {
return primitiveDef.targets !== undefined ?
addMorphTargets(geometry, primitiveDef.targets, parser) :
geometry;
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @param {Array} primitives
* @return {Promise>}
*/
GLTFParser.prototype.loadGeometries = function (primitives) {
var parser = this;
var extensions = this.extensions;
var cache = this.primitiveCache;
function createDracoPrimitive(primitive) {
return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]
.decodePrimitive(primitive, parser)
.then(function (geometry) {
return addPrimitiveAttributes(geometry, primitive, parser);
});
}
var pending = [];
for (var i = 0, il = primitives.length; i < il; i++) {
var primitive = primitives[i];
var cacheKey = createPrimitiveKey(primitive);
// See if we've already created this geometry
var cached = cache[cacheKey];
if (cached) {
// Use the cached geometry if it exists
pending.push(cached.promise);
} else {
var geometryPromise;
if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive(primitive);
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes(new THREE.BufferGeometry(), primitive, parser);
}
// Cache this geometry
cache[cacheKey] = {
primitive: primitive,
promise: geometryPromise
};
pending.push(geometryPromise);
}
}
return Promise.all(pending);
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
* @param {number} meshIndex
* @return {Promise}
*/
GLTFParser.prototype.loadMesh = function (meshIndex) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
var meshDef = json.meshes[meshIndex];
var primitives = meshDef.primitives;
var pending = [];
for (var i = 0, il = primitives.length; i < il; i++) {
var material = primitives[i].material === undefined ?
createDefaultMaterial() :
this.getDependency('material', primitives[i].material);
pending.push(material);
}
return Promise.all(pending).then(function (originalMaterials) {
return parser.loadGeometries(primitives).then(function (geometries) {
var meshes = [];
for (var i = 0, il = geometries.length; i < il; i++) {
var geometry = geometries[i];
var primitive = primitives[i];
// 1. create Mesh
var mesh;
var material = originalMaterials[i];
if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined) {
// .isSkinnedMesh isn't in glTF spec. See .markDefs()
mesh = meshDef.isSkinnedMesh === true ?
new THREE.SkinnedMesh(geometry, material) :
new THREE.Mesh(geometry, material);
if (mesh.isSkinnedMesh === true) mesh.normalizeSkinWeights(); // #15319
if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) {
mesh.drawMode = THREE.TriangleStripDrawMode;
} else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) {
mesh.drawMode = THREE.TriangleFanDrawMode;
}
} else if (primitive.mode === WEBGL_CONSTANTS.LINES) {
mesh = new THREE.LineSegments(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) {
mesh = new THREE.Line(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) {
mesh = new THREE.LineLoop(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.POINTS) {
mesh = new THREE.Points(geometry, material);
} else {
throw new Error('THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode);
}
if (Object.keys(mesh.geometry.morphAttributes).length > 0) {
updateMorphTargets(mesh, meshDef);
}
mesh.name = meshDef.name || ('mesh_' + meshIndex);
if (geometries.length > 1) mesh.name += '_' + i;
assignExtrasToUserData(mesh, meshDef);
parser.assignFinalMaterial(mesh);
meshes.push(mesh);
}
if (meshes.length === 1) {
return meshes[0];
}
var group = new THREE.Group();
for (var i = 0, il = meshes.length; i < il; i++) {
group.add(meshes[i]);
}
return group;
});
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
* @param {number} cameraIndex
* @return {Promise}
*/
GLTFParser.prototype.loadCamera = function (cameraIndex) {
var camera;
var cameraDef = this.json.cameras[cameraIndex];
var params = cameraDef[cameraDef.type];
if (!params) {
console.warn('THREE.GLTFLoader: Missing camera parameters.');
return;
}
if (cameraDef.type === 'perspective') {
camera = new THREE.PerspectiveCamera(THREE.Math.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6);
} else if (cameraDef.type === 'orthographic') {
camera = new THREE.OrthographicCamera(params.xmag / -2, params.xmag / 2, params.ymag / 2, params.ymag / -2, params.znear, params.zfar);
}
if (cameraDef.name !== undefined) camera.name = cameraDef.name;
assignExtrasToUserData(camera, cameraDef);
return Promise.resolve(camera);
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
* @param {number} skinIndex
* @return {Promise
GLTFParser.prototype.loadSkin = function (skinIndex) {
var skinDef = this.json.skins[skinIndex];
var skinEntry = {
joints: skinDef.joints
};
if (skinDef.inverseBindMatrices === undefined) {
return Promise.resolve(skinEntry);
}
return this.getDependency('accessor', skinDef.inverseBindMatrices).then(function (accessor) {
skinEntry.inverseBindMatrices = accessor;
return skinEntry;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
* @param {number} animationIndex
* @return {Promise}
*/
GLTFParser.prototype.loadAnimation = function (animationIndex) {
var json = this.json;
var animationDef = json.animations[animationIndex];
var pendingNodes = [];
var pendingInputAccessors = [];
var pendingOutputAccessors = [];
var pendingSamplers = [];
var pendingTargets = [];
for (var i = 0, il = animationDef.channels.length; i < il; i++) {
var channel = animationDef.channels[i];
var sampler = animationDef.samplers[channel.sampler];
var target = channel.target;
var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
var input = animationDef.parameters !== undefined ? animationDef.parameters[sampler.input] : sampler.input;
var output = animationDef.parameters !== undefined ? animationDef.parameters[sampler.output] : sampler.output;
pendingNodes.push(this.getDependency('node', name));
pendingInputAccessors.push(this.getDependency('accessor', input));
pendingOutputAccessors.push(this.getDependency('accessor', output));
pendingSamplers.push(sampler);
pendingTargets.push(target);
}
return Promise.all([
Promise.all(pendingNodes),
Promise.all(pendingInputAccessors),
Promise.all(pendingOutputAccessors),
Promise.all(pendingSamplers),
Promise.all(pendingTargets)
]).then(function (dependencies) {
var nodes = dependencies[0];
var inputAccessors = dependencies[1];
var outputAccessors = dependencies[2];
var samplers = dependencies[3];
var targets = dependencies[4];
var tracks = [];
for (var i = 0, il = nodes.length; i < il; i++) {
var node = nodes[i];
var inputAccessor = inputAccessors[i];
var outputAccessor = outputAccessors[i];
var sampler = samplers[i];
var target = targets[i];
if (node === undefined) continue;
node.updateMatrix();
node.matrixAutoUpdate = true;
var TypedKeyframeTrack;
switch (PATH_PROPERTIES[target.path]) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = THREE.NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = THREE.QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.position:
case PATH_PROPERTIES.scale:
default:
TypedKeyframeTrack = THREE.VectorKeyframeTrack;
break;
}
var targetName = node.name ? node.name : node.uuid;
var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[sampler.interpolation] : THREE.InterpolateLinear;
var targetNames = [];
if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) {
// node can be THREE.Group here but
// PATH_PROPERTIES.weights(morphTargetInfluences) should be
// the property of a mesh object under group.
node.traverse(function (object) {
if (object.isMesh === true && object.morphTargetInfluences) {
targetNames.push(object.name ? object.name : object.uuid);
}
});
} else {
targetNames.push(targetName);
}
// KeyframeTrack.optimize() will modify given 'times' and 'values'
// buffers before creating a truncated copy to keep. Because buffers may
// be reused by other tracks, make copies here.
for (var j = 0, jl = targetNames.length; j < jl; j++) {
var track = new TypedKeyframeTrack(
targetNames[j] + '.' + PATH_PROPERTIES[target.path],
THREE.AnimationUtils.arraySlice(inputAccessor.array, 0),
THREE.AnimationUtils.arraySlice(outputAccessor.array, 0),
interpolation
);
// Here is the trick to enable custom interpolation.
// Overrides .createInterpolant in a factory method which creates custom interpolation.
if (sampler.interpolation === 'CUBICSPLINE') {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
return new GLTFCubicSplineInterpolant(this.times, this.values, this.getValueSize() / 3, result);
};
// Workaround, provide an alternate way to know if the interpolant type is cubis spline to track.
// track.getInterpolation() doesn't return valid value for custom interpolant.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
tracks.push(track);
}
}
var name = animationDef.name !== undefined ? animationDef.name : 'animation_' + animationIndex;
return new THREE.AnimationClip(name, undefined, tracks);
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
* @param {number} nodeIndex
* @return {Promise}
*/
GLTFParser.prototype.loadNode = function (nodeIndex) {
var json = this.json;
var extensions = this.extensions;
var parser = this;
var meshReferences = json.meshReferences;
var meshUses = json.meshUses;
var nodeDef = json.nodes[nodeIndex];
return (function () {
// .isBone isn't in glTF spec. See .markDefs
if (nodeDef.isBone === true) {
return Promise.resolve(new THREE.Bone());
} else if (nodeDef.mesh !== undefined) {
return parser.getDependency('mesh', nodeDef.mesh).then(function (mesh) {
var node;
if (meshReferences[nodeDef.mesh] > 1) {
var instanceNum = meshUses[nodeDef.mesh]++;
node = mesh.clone();
node.name += '_instance_' + instanceNum;
// onBeforeRender copy for Specular-Glossiness
node.onBeforeRender = mesh.onBeforeRender;
for (var i = 0, il = node.children.length; i < il; i++) {
node.children[i].name += '_instance_' + instanceNum;
node.children[i].onBeforeRender = mesh.children[i].onBeforeRender;
}
} else {
node = mesh;
}
// if weights are provided on the node, override weights on the mesh.
if (nodeDef.weights !== undefined) {
node.traverse(function (o) {
if (!o.isMesh) return;
for (var i = 0, il = nodeDef.weights.length; i < il; i++) {
o.morphTargetInfluences[i] = nodeDef.weights[i];
}
});
}
return node;
});
} else if (nodeDef.camera !== undefined) {
return parser.getDependency('camera', nodeDef.camera);
} else if (nodeDef.extensions &&
nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL] &&
nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].light !== undefined) {
return parser.getDependency('light', nodeDef.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL].light);
} else {
return Promise.resolve(new THREE.Object3D());
}
}()).then(function (node) {
if (nodeDef.name !== undefined) {
node.name = THREE.PropertyBinding.sanitizeNodeName(nodeDef.name);
}
assignExtrasToUserData(node, nodeDef);
if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef);
if (nodeDef.matrix !== undefined) {
var matrix = new THREE.Matrix4();
matrix.fromArray(nodeDef.matrix);
node.applyMatrix(matrix);
} else {
if (nodeDef.translation !== undefined) {
node.position.fromArray(nodeDef.translation);
}
if (nodeDef.rotation !== undefined) {
node.quaternion.fromArray(nodeDef.rotation);
}
if (nodeDef.scale !== undefined) {
node.scale.fromArray(nodeDef.scale);
}
}
return node;
});
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
* @param {number} sceneIndex
* @return {Promise}
*/
GLTFParser.prototype.loadScene = function () {
// scene node hierachy builder
function buildNodeHierachy(nodeId, parentObject, json, parser) {
var nodeDef = json.nodes[nodeId];
return parser.getDependency('node', nodeId).then(function (node) {
if (nodeDef.skin === undefined) return node;
// build skeleton here as well
var skinEntry;
return parser.getDependency('skin', nodeDef.skin).then(function (skin) {
skinEntry = skin;
var pendingJoints = [];
for (var i = 0, il = skinEntry.joints.length; i < il; i++) {
pendingJoints.push(parser.getDependency('node', skinEntry.joints[i]));
}
return Promise.all(pendingJoints);
}).then(function (jointNodes) {
var meshes = node.isGroup === true ? node.children : [node];
for (var i = 0, il = meshes.length; i < il; i++) {
var mesh = meshes[i];
var bones = [];
var boneInverses = [];
for (var j = 0, jl = jointNodes.length; j < jl; j++) {
var jointNode = jointNodes[j];
if (jointNode) {
bones.push(jointNode);
var mat = new THREE.Matrix4();
if (skinEntry.inverseBindMatrices !== undefined) {
mat.fromArray(skinEntry.inverseBindMatrices.array, j * 16);
}
boneInverses.push(mat);
} else {
console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[j]);
}
}
mesh.bind(new THREE.Skeleton(bones, boneInverses), mesh.matrixWorld);
}
return node;
});
}).then(function (node) {
// build node hierachy
parentObject.add(node);
var pending = [];
if (nodeDef.children) {
var children = nodeDef.children;
for (var i = 0, il = children.length; i < il; i++) {
var child = children[i];
pending.push(buildNodeHierachy(child, node, json, parser));
}
}
return Promise.all(pending);
});
}
return function loadScene(sceneIndex) {
var json = this.json;
var extensions = this.extensions;
var sceneDef = this.json.scenes[sceneIndex];
var parser = this;
var scene = new THREE.Scene();
if (sceneDef.name !== undefined) scene.name = sceneDef.name;
assignExtrasToUserData(scene, sceneDef);
if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef);
var nodeIds = sceneDef.nodes || [];
var pending = [];
for (var i = 0, il = nodeIds.length; i < il; i++) {
pending.push(buildNodeHierachy(nodeIds[i], scene, json, parser));
}
return Promise.all(pending).then(function () {
return scene;
});
};
}();
return GLTFLoader;
})();