- 卷积调制空间自注意力SPATIALatt模型详解及代码复现
清风AI
深度学习人工智能python神经网络conda
背景与意义SPATIALaTT模型的提出源于对自注意力机制和卷积神经网络(CNN)的深入研究。在计算机视觉领域,CNN长期占据主导地位,而自注意力机制的引入为视觉任务带来了新的思路。SPATIALaTT模型的意义在于融合了这两种强大的特征提取方法,充分发挥了它们的优势。这种融合不仅提高了模型的性能,还为设计更高效的视觉模型提供了新的思路,推动了计算机视觉技术的发展。通过结合自注意力机制和卷积神经网
- 2025 年成为 AI 独立开发者的 3 个步骤
程序员陆通
人工智能
2025年成为AI独立开发者的3个步骤每天拆解一个AI应用或模型功能选择一个热门的AI应用或开源模型(如ChatGPT、MidJourney、Whisper),深度体验其核心功能,分析背后的技术实现。用笔记工具记录其亮点、缺点,以及你认为可以改进的地方。思考如何通过自己的开发能力优化这些功能,形成自己的产品思路。每天学习1小时AI开发相关技能针对独立开发者需要的核心技能,每天学习一点点,比如:如何
- Ruby Web开发框架的介绍及示例代码
YurwRuby
ruby前端开发语言
Ruby是一种简洁而强大的编程语言,广泛用于Web开发。在Ruby生态系统中,有几种实用型的Web开发框架,它们提供了丰富的功能和工具,帮助开发者快速构建可靠的Web应用程序。下面将介绍几种常用的RubyWeb开发框架,并提供相应的示例代码。RubyonRails(Rails)RubyonRails,简称Rails,是Ruby最知名的Web开发框架之一。Rails采用了MVC(Model-View
- Swift语言的函数实现
2501_90183952
包罗万象golang开发语言后端
Swift语言函数实现详解引言Swift是一种强类型、泛型编程的现代编程语言,广泛应用于iOS和macOS开发。函数是Swift编程中的基本构建块之一,通过函数可以将代码进行模块化,实现重用性和可读性。本篇文章将系统地介绍Swift中的函数,包括其定义、参数、返回值、闭包和高阶函数等,实现一些实用的示例,帮助读者更好地理解和掌握Swift的函数特性。一、函数的基本概念函数是执行特定任务的一段代码,
- 深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
网络安全研发随想
rnngptlstm
从简单的RNN到复杂的LSTM/GRU,再到引入注意力机制,研究者们一直在努力解决序列建模的核心问题。每一步的进展都为下一步的突破奠定了基础,最终孕育出了革命性的Transformer架构和GPT大模型。1.从n-gram到循环神经网络(RNN)的诞生1.1N-gram模型在深度学习兴起之前,处理序列数据主要依靠统计方法,如n-gram模型。N-gram是一种基于统计的语言模型,它的核心思想是:一
- C++: Dtrees:load(constg String& filepath, const String& nodeName)中nodeName参数含义
湫兮之风
c++c++开发语言算法
1.nodeName的作用当你保存模型时,整个决策树会被序列化到一个XML或YAML文件中。nodeName是加载时指定的一个逻辑路径,用于从文件中找到某个节点或子结构,而不是存储在文件中的字段。如果你不指定nodeName,OpenCV默认会尝试加载文件中根节点对应的模型。2.默认的行为如果你不指定nodeName,通常会加载文件的根节点:Ptrtree=cv::ml::DTrees::load
- 1月更新 | 国内可用的 ChatGPT 中文版镜像网站攻略合集
一、ChatGPT镜像网站①ChatGPT中文版支持4o以及o1,支持MJ绘画②ChatGPT镜像网站支持通用全模型,支持文件读取、插件、绘画、AIPPT③ChatGPT工具站收集各种可以用的ChatGPT镜像网站,免费的收费的。1.什么是ChatGPT镜像网站ChatGPT镜像网站(ChatGPTMirrorSite)是指通过复制原始网站内容和结构,创建的备用网站。其主要目的是在原始网站无法访问
- Transformer入门(1)transformer及其编码器-解码器
通信仿真实验室
GoogleBERT构建和训练NLP模型berttransformer人工智能NLP自然语言处理
文章目录1.Transformer简介2.Transformer的编码器-解码器架构3.transformer的编码器1.Transformer简介Transformer模型是一种用于自然语言处理的机器学习模型,它在2017年由Google的研究者提出,并在论文《AttentionisAllYouNeed》中详细描述。Transformer模型的核心创新在于其采用了自注意力(self-attent
- 月之暗面今日发布k1.5多模态思考模型
百态老人
笔记人工智能
月之暗面k1.5多模态思考模型的问世一、月之暗面k1.5多模态思考模型介绍2025年1月20日,月之暗面发布了k1.5多模态思考模型。这一模型在基准测试成绩方面展现出了非凡的性能,它实现了SOTA(state-of-the-art)级别的多模态推理和通用推理能力。多模态推理即模型能够对多种类型的数据(如文本、图像等)进行整合分析推理,通用推理能力则表明它可以广泛应用于多种任务场景进行有效的逻辑推理
- 如何进行cad地理配准_如何对扫描图片进行ArcGIS配准?
weixin_39604276
如何进行cad地理配准
就这么个简单的问题啊昨天搞了一晚上肥肥搞了大半天百度上找愣是看见一帮智障在瞎扯工具书上又没有想要的信息水文章水得一点用没有实在是服气索性请教师兄操作今天就直接记录详细教程以供他日使用!首先,插入底图可以各种格式尽量要求清晰度高吉林莫莫格国家级保护区功能区划图下面进行地理配准,配准时确定地图图例,右键工具栏选出地理配准去掉自动校正左键点一下后右键我这个图是1:100000的比例尺所以以米为单位应该这
- Grape-RAG
disgare
AIai
Grape-RAG传统RAG的局限性图的优点用知识图谱来呈现数据关系GraphRAG传统RAG的局限性经典的RAG架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示:这一架构目前广泛应用于各类AI业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然RAG通过知识增强一定程度上缓解了LLM幻觉问题,
- transformer模型代码
地瓜不是呱
学习笔记transformer深度学习pytorch
importnumpyasnpimporttorchimporttorch.nnasnnimporttorch.optimasoptimimportmatplotlib.pyplotaspltimportmathdefmake_batch(sentences):input_batch=[[src_vocab[n]forninsentences[0].split()]]output_batch=[[
- 用Python实现概率语言模型(2-元语法模型)
peanutwang
python语言模型
首先构造一个语料库,由6句话组成,每句话3个字。corpus='她很香她很菜她很好他很菜他很好菜很好'.split()构造一个字典,存储一元的字数Count1={}遍历语料库,把每个字出现的次数存储在字典中。forsentenceincorpus:forwordinsentence:ifwordinCount1:Count1[word]+=1#如果word在字典中存在else:Count1[wor
- 细嗦Transformer(三):准备训练,讲解及代码实现优化器、学习率调整策略、正则化和KL散度损失
Ace_bb
算法LLMtransformer
文章目录关注我:细嗦大模型批处理对象/BatchesandMasking训练循环主函数/TrainingLoop优化器/Optimizer学习率调整策略/Learningrateadjustmentstrategy样例测试正则化/RegularizationLabelsmoothing标签平滑KL散度损失样例测试Github完整代码----求求了给个star和关注吧参考资料求求了,给个star和关
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- VIM 的 YCM 插件
哎呦,帅小伙哦
开发工具vim编辑器linux
1、背景VIM是一个非常强大的文本编辑器,因其高效的操作方式和丰富的插件生态系统而备受开发者喜爱。对于开发人员来说,代码补全和智能提示是提升编程效率的重要工具,而YouCompleteMe(YCM)插件就是其中一款功能强大且广泛使用的补全插件。YouCompleteMe(简称YCM)是一个为VIM编辑器设计的代码补全插件。它能够提供智能代码补全、错误检查、实时提示等功能,支持多种编程语言,如C/C
- Kafka消息轨迹方案设计与实现
小马不敲代码
大数据kafka
在处理过的几个千万级TPS的Kafka集群中,消息追踪始终是一个既重要又棘手的问题。一条消息从Producer发出后,经过复杂的处理流程,最终被Consumer消费,中间可能会经历重试、重平衡、多副本复制等多个环节。如果没有完善的追踪机制,一旦出现问题将很难定位。本文将详细介绍Kafka消息轨迹的实现方案。1、Kafka消息处理模型在设计追踪方案前,我们需要先理解Kafka的消息处理模型。一条消息
- azkaban的概况
北京小峻
大数据azkabanmysql数据库
Azkaban的性质azkaban是一个任务调度,管理系统,可以帮用户管理,调度各种运算任务的一个web服务器可以调度任何任务,只要你的任务能用脚本启动azkaban的类似的产品还有很多,例如hadoop生态中原生的:oozie,areflow局限性目前azkaban只支持mysql作为元数据管理系统,必须安装mysql服务器角色executorserver有好几个是真正执行的程序,调度用户的任务
- Maxwell软件使用问题——旧版本打开新版本(The partner project name of the link cannot be empty)
加点油。。。。
Maxwell建模maxwell电机建模仿真ansys
问题:使用AnsysElectronics2019R1打开2022R1运行maxwell模型是出现了下面问题解决方法:参考链接:(https://bbs.simol.cn/thread-200781-1-1.html)将setup中Advanced的对勾去掉。
- 服务化架构 IM 系统之红包功能设计与实现
棕生
IM系统服务化架构IM系统服务化架构红包逻辑发红包抢红包拆红包
在IM系统中,“红包”是一种很常见的应用。在前面的文章(见《基于需求分析模型来结构化剖析IM系统》)中,我们曾分析过,“红包”属于扩展功能需求,“消息”属于基础功能需求,红包功能的实现需要基于消息功能的实现。在文章(见《分层架构IM系统之消息收发功能设计与实现》)中,我们深入分析过消息的收发流程;在IM的服务化架构中,消息收发逻辑与在分层架构中类似,见下图,我们快速回顾一下。图中箭头表示数据流向。
- 异常检测的评价指标:ROCAUC等【tips】
太简单了
tips计算机视觉深度学习pytorch
准确率Precision&召回率Recallfromsklearn.metricsimportprecision_recall_curveprecision,recall,thresholds=precision_recall_curve(gt_mask.flatten(),scores.flatten())混淆矩阵:实际预测正负正TP(真正类)FN(假负类)负FP(假正类)TN(真负类)prec
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 深度学习中超参数
fengbingchun
DeepLearninghyperparameter
深度学习中的超参数(hyperparameters)是决定网络结构的变量(例如隐藏层数量)和决定网络训练方式的变量(例如学习率)。超参数的选择会显著影响训练模型所需的时间,也会影响模型的性能。超参数是在训练开始之前设置的,而不是从数据中学习的参数。超参数是模型训练期间无法学习的参数,需要事先设置。在深度学习中,模型由模型参数(如神经网络的权重和偏置)定义或表示。然而,训练模型的过程涉及选择最佳超参
- 鸿蒙 er 紧急集合!贡献你的鸿蒙开发工具,赢取大赶集好礼
在科技浪潮中,鸿蒙生态正以破竹之势迅猛前行,蓬勃发展。鸿蒙开发工具广场社区作为鸿蒙开发实用工具的汇聚高地,一直致力于为开发者们打造一个资源丰富、高效便捷的交流平台。2025年开春之际,Gitcode诚邀广大开发者参与“鸿蒙开发工具大赶集”活动,将平时鸿蒙开发过程中的经验工具化,助力更多开发者高效地开发鸿蒙应用。欢迎扫描下方海报中的二维码加入此次活动,一同为鸿蒙生态的繁荣添砖加瓦.
- 1月更新 | 国内可用的 ChatGPT 镜像网站整理合集
人工智能chatgpt
一、ChatGPT镜像网站①ChatGPT中文版支持4o以及o1,支持MJ绘画②ChatGPT镜像网站支持通用全模型,支持文件读取、插件、绘画、AIPPT③ChatGPT工具站收集各种可以的ChatGPT镜像网站,免费的收费的。支持4o以及o1,支持MJ绘画1.什么是ChatGPT镜像网站ChatGPT镜像网站(ChatGPTMirrorSite)是指通过复制原始网站内容和结构,创建的备用网站。其
- 1月更新 | 国内可用的 ChatGPT中文版镜像网站攻略整理
人工智能chatgpt
一、ChatGPT镜像网站①ChatGPT中文版支持4o以及o1,支持MJ绘画②ChatGPT镜像网站支持通用全模型,支持文件读取、插件、绘画、AIPPT③ChatGPT工具站收集各种可以用的ChatGPT镜像网站,免费的收费的。1.什么是ChatGPT镜像网站ChatGPT镜像网站(ChatGPTMirrorSite)是指通过复制原始网站内容和结构,创建的备用网站。其主要目的是在原始网站无法访问
- 12月更新|国内可用的 ChatGPT中文版镜像网站合集~
一、ChatGPT镜像网站①ChatGPT中文版支持4o以及o1,支持MJ绘画②ChatGPT镜像网站支持通用全模型,支持文件读取、插件、绘画、AIPPT③ChatGPT工具站收集各种可以的ChatGPT镜像网站,免费的收费的。支持4o以及o1,支持MJ绘画1.什么是ChatGPT镜像网站ChatGPT镜像网站(ChatGPTMirrorSite)是指通过复制原始网站内容和结构,创建的备用网站。其
- 深度学习学习笔记(第30周)
qq_51339898
深度学习人工智能
一、摘要本周报的目的在于汇报第30周的学习成果,本周主要聚焦于基于深度学习的图像分割领域的常用模型U-net。 U-net是最常用、最简单的一种分割模型,在2015年被提出。UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。UNet算法的关键创新是在解码器中引入了跳跃连接(SkipConnections),即将编码器中的特征图与解码器中对应的特征图进行连接
- 【大模型】Spring AI对接ChatGpt使用详解
小码农叔叔
微服务治理与实战springboot入门到精通springspringaiAspringAispringai对接gptspringai整合gptspringai使用详解springai使用
目录一、前言二、springai介绍2.1什么是SpringAI2.2SpringAI特点2.3SpringAI为开发带来的便利2.4SpringAI应用领域2.4.1聊天模型2.4.2文本到图像模型2.4.3音频转文本2.4.4嵌入大模型使用2.4.5矢量数据库支持2.4.6用于数据工程ETL框架三、SpringAI对接ChatGPT3.1前置准备3.2添加依赖3.3接入流程3.3.1配置文件3
- 高性能队列Disruptor的初体验
程序员
深入理解Disruptor1.概述Disruptor是一个高性能、低延迟的无锁队列替代方案,最初由LMAX公司开发,专为处理高吞吐量和低延迟的消息传递系统而设计。它利用环形缓冲区(RingBuffer)和无锁的生产者-消费者模型,大幅提升并发性能。相比传统的基于java.util.concurrent的队列(如ArrayBlockingQueue、LinkedBlockingQueue),Disr
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite