张松然
本文为读《MySQL 实战》摘抄的读书笔记,原文更加精彩,推荐大家阅读,并表达对原作者的支持。
基础架构:一条 SQL 查询语句是如何执行的?
MySQL 的基本架构示意图:
MySQL 可以分为 Server 层和存储引擎层两部分。
Server 层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。
存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持 InnoDB、MyISAM、Memory 等多个存储引擎。现在最常用的存储引擎是 InnoDB,它从 MySQL 5.5.5 版本开始成为了默认存储引擎。
不同存储引擎的表数据存取方式不同,支持的功能也不同。不同的存储引擎共用一个Server 层,也就是从连接器到执行器的部分。
连接器
连接器负责跟客户端建立连接、获取权限、维持和管理连接。
查询缓存
MySQL 拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以 key-value 对的形式,被直接缓存在内存中。key 是查询的语句,value 是查询的结果。如果你的查询能够直接在这个缓存中找到 key,那么这个 value 就会被直接返回给客户端。
但是大多数情况下我会建议你不要使用查询缓存,为什么呢?因为查询缓存往往弊大于利。
查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。因此很可能你费劲地把结果存起来,还没使用呢,就被一个更新全清空了。对于更新压力大的数据库来说,查询缓存的命中率会非常低。除非你的业务就是有一张静态表,很长时间才会更新一次。比如,一个系统配置表,那这张表上的查询才适合使用查询缓存。
MySQL 8.0 版本直接将查询缓存的整块功能删掉了,也就是说 8.0 开始彻底没有这个功能了。
分析器
如果没有命中查询缓存,就要开始真正执行语句了。
分析器先会做“词法分析”。做完了这些识别以后,就要做“语法分析”。
优化器
优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序。
优化器阶段完成后,这个语句的执行方案就确定下来了,然后进入执行器阶段。
执行器
打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。
你会在数据库的慢查询日志中看到一个 rows_examined 的字段,表示这个语句执行过程中扫描了多少行。这个值就是在执行器每次调用引擎获取数据行的时候累加的。
在有些场景下,执行器调用一次,在引擎内部则扫描了多行,因此引擎扫描行数跟 rows_examined 并不是完全相同的。
我给你留一个问题吧,如果表 T 中没有字段 k,而你执行了这个语句 select * from T where k=1, 那肯定是会报“不存在这个列”的错误: “Unknown column ‘k’ in ‘where clause’”。你觉得这个错误是在我们上面提到的哪个阶段报出来的呢?
答案是分析器。
与查询流程不一样的是,更新流程还涉及两个重要的日志模块,它们正是我们今天要讨论的主角:redo log(重做日志)和 binlog(归档日志)。
重要的日志模块:redo log
MySQL 里经常说到的 WAL 技术,WAL 的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘。
具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做。
与此类似,InnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,那么这块“粉板”总共就可以记录 4GB 的操作。从头开始写,写到末尾就又回到开头循环写。
write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。
write pos 和 checkpoint 之间的是“粉板”上还空着的部分,可以用来记录新的操作。如果 write pos 追上 checkpoint,表示“粉板”满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint 推进一下。
有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。
重要的日志模块:binlog
redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)。
为什么会有两份日志呢?
因为最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。
这两种日志有以下三点不同。
有了对这两个日志的概念性理解,我们再来看执行器和 InnoDB 引擎在执行这个简单的 update 语句时的内部流程。
update 语句执行流程:
将 redo log 的写入拆成了两个步骤:prepare 和 commit,这就是"两阶段提交"。
两阶段提交
前面我们说过了,binlog 会记录所有的逻辑操作,并且是采用“追加写”的形式。
由于 redo log 和 binlog 是两个独立的逻辑如果不使用“两阶段提交”,那么数据库的状态就有可能和用它的日志恢复出来的库的状态不一致。
小结
redo log 用于保证 crash-safe 能力。innodbflushlogattrx_commit 这个参数设置成 1 的时候,表示每次事务的 redo log 都直接持久化到磁盘。这个参数我建议你设置成 1,这样可以保证 MySQL 异常重启之后数据不丢失。
sync_binlog 这个参数设置成 1 的时候,表示每次事务的 binlog 都持久化到磁盘。这个参数我也建议你设置成 1,这样可以保证 MySQL 异常重启之后 binlog 不丢失。
事务隔离:为什么你改了我还看不见?
简单来说,事务就是要保证一组数据库操作,要么全部成功,要么全部失败。在 MySQL 中,事务支持是在引擎层实现的。你现在知道,MySQL 是一个支持多引擎的系统,但并不是所有的引擎都支持事务。比如 MySQL 原生的 MyISAM 引擎就不支持事务,这也是 MyISAM 被 InnoDB 取代的重要原因之一。
隔离性与隔离级别
在谈隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。SQL 标准的事务隔离级别包括:
在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用加锁的方式来避免并行访问。
Oracle 数据库的默认隔离级别其实就是“读提交”。
事务启动时的视图可以认为是静态的,不受其他事务更新的影响。
事务隔离的实现
在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。
同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。
你一定会问,回滚日志总不能一直保留吧,什么时候删除呢?答案是,在不需要的时候才删除。也就是说,系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。
什么时候才不需要了呢?就是当系统里没有比这个回滚日志更早的 read-view 的时候。
长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。
在 MySQL 5.5 及以前的版本,回滚日志是跟数据字典一起放在 ibdata 文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。
除了对回滚段的影响,长事务还占用锁资源。
事务的启动方式
MySQL 的事务启动方式有以下几种:
有些客户端连接框架会默认连接成功后先执行一个 set autocommit=0 的命令。这就导致接下来的查询都在事务中,如果是长连接,就导致了意外的长事务。
因此,我会建议你总是使用 set autocommit=1, 通过显式语句的方式来启动事务。
但是有的开发同学会纠结“多一次交互”的问题。对于一个需要频繁使用事务的业务,第二种方式每个事务在开始时都不需要主动执行一次 “begin”,减少了语句的交互次数。
索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。
索引的常见模型
索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。简单的数据结构,它们分别是哈希表、有序数组和搜索树。
哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。
不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。
有序数组索引只适用于静态存储引擎。
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。
当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。
树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。
以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。
N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。
在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。
InnoDB 的索引模型
在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。
每一个索引在 InnoDB 里面对应一棵 B+ 树。索引类型分为主键索引和非主键索引。
主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。
非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。
基于主键索引和普通索引的查询有什么区别?
也就是说,基于非主键索引的查询需要多扫描一棵索引树。
索引维护
而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。
当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。
假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。
显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:
你一定看出来了,这就是典型的 KV 场景。
由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。
回到主键索引树搜索的过程,我们称为回表。
覆盖索引
如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
最左前缀原则
B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。索引项是按照索引定义里面出现的字段顺序排序的。
在建立联合索引的时候,如何安排索引内的字段顺序。
第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
索引下推
在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。
MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
图3
图4
在图 3 和 4 这两个图里面,每一个虚线箭头表示回表一次。
图 3 中,在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。
图 4 跟图 3 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。
全局锁和表锁:给表加个字段怎么有这么多阻碍?
数据库锁设计的初衷是处理并发问题。当出现并发访问的时候,数据库需要合理地控制资源的访问规则。而锁就是用来实现这些访问规则的重要数据结构。
根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。
全局锁
顾名思义,全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。
全局锁的典型使用场景是,做全库逻辑备份。
但是让整库都只读,听上去就很危险:
一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。
如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。
业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。
表级锁
MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。
表锁的语法是 lock tables … read/write。与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。
举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。
而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。
另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。
因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。
你肯定知道,给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,你肯定会特别小心,以免对线上服务造成影响。
我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。
之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。
如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。
事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。
如何安全地给小表加字段?
首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。
小结
全局锁主要用在逻辑备份过程中。对于全部是 InnoDB 引擎的库,我建议你选择使用–single-transaction 参数,对应用会更友好。
表锁一般是在数据库引擎不支持行锁的时候才会被用到的。如果你发现你的应用程序里有 lock tables 这样的语句,你需要追查一下,比较可能的情况是:
MDL 会直到事务提交才释放,在做表结构变更的时候,你一定要小心不要导致锁住线上查询和更新。
我给你留一个问题吧,备份一般都会在备库上执行,你在用–single-transaction 方法做逻辑备份的过程中,如果主库上的一个小表做了一个 DDL,比如给一个表上加了一列。这时候,从备库上会看到什么现象呢?
Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT; /* other tables */ Q3:SAVEPOINT sp; /* 时刻 1 */ Q4:show create table `t1`; /* 时刻 2 */ Q5:SELECT * FROM `t1`; /* 时刻 3 */ Q6:ROLLBACK TO SAVEPOINT sp; /* 时刻 4 */ /* other tables */
参考答案如下:
如果在 Q4 语句执行之前到达,现象:没有影响,备份拿到的是 DDL 后的表结构。
如果在“时刻 2”到达,则表结构被改过,Q5 执行的时候,报 Table definition has changed, please retry transaction,现象:mysqldump 终止;
如果在“时刻 2”和“时刻 3”之间到达,mysqldump 占着 t1 的 MDL 读锁,binlog 被阻塞,现象:主从延迟,直到 Q6 执行完成。
从“时刻 4”开始,mysqldump 释放了 MDL 读锁,现象:没有影响,备份拿到的是 DDL 前的表结构。
MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁。InnoDB 是支持行锁的,这也是 MyISAM 被 InnoDB 替代的重要原因之一。(innodb行级锁是通过锁索引记录实现的。)
顾名思义,行锁就是针对数据表中行记录的锁。这很好理解,比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。
从两阶段锁说起
在下面的操作序列中,事务 B 的 update 语句执行时会是什么现象呢?假设字段 id 是表 t 的主键。
你可以验证一下:实际上事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。
知道了这个答案,你一定知道了事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。
也就是说,在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。
死锁和死锁检测
当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。
这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:
在 InnoDB 中,innodblockwait_timeout 的默认值是 50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过 50s 才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。
所以,超时时间设置太短的话,会出现很多误伤。
所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且 innodbdeadlockdetect 的默认值本身就是 on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。
每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。
问题的症结在于,死锁检测要耗费大量的 CPU 资源。
一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。
另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。
因此,这个并发控制要做在数据库服务端。
小结
调整语句顺序并不能完全避免死锁。所以我们引入了死锁和死锁检测的概念,以及提供了三个方案,来减少死锁对数据库的影响。减少死锁的主要方向,就是控制访问相同资源的并发事务量。
我给你留一个问题吧,如果你要删除一个表里面的前 10000 行数据,有以下三种方法可以做到:
你会选择哪一种方法呢?为什么呢?
确实是这样的,第二种方式是相对较好的。
第一种方式(即:直接执行 delete from T limit 10000)里面,单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟。
第三种方式(即:在 20 个连接中同时执行 delete from T limit 500),会人为造成锁冲突。
mysql> CREATE TABLE `t` ( `id` int(11) NOT NULL, `k` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB; insert into t(id, k) values(1,1),(2,2);
begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令。
在这个例子中,事务 C 没有显式地使用 begin/commit,表示这个 update 语句本身就是一个事务,语句完成的时候会自动提交。事务 B 在更新了行之后查询 ; 事务 A 在一个只读事务中查询,并且时间顺序上是在事务 B 的查询之后。
这时,如果我告诉你事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1。
在 MySQL 里,有两个“视图”的概念:
它没有物理结构,作用是事务执行期间用来定义“我能看到什么数据”。
“快照”在 MVCC 里是怎么工作的?
在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。
InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。
而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。
也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。
图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。
实际上,图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。
按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。
因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。
当然,如果“上一个版本”也不可见,那就得继续往前找。
在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。
数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。
这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。
而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:
如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
如果落在黄色部分,那就包括两种情况:
因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。
所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。
这里,我们不妨做如下假设:
这样,事务 A 的视图数组就是 [99,100], 事务 B 的视图数组是 [99,100,101], 事务 C 的视图数组是 [99,100,101,102]。
从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。
第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。
你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了。
好,现在事务 A 要来读数据了,它的视图数组是 [99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:
这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。
一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:
现在,我们用这个规则来判断图 4 中的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:
更新逻辑
你看图 5 中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?
是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。
但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。
所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。
因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。
其实,除了 update 语句外,select 语句如果加锁,也是当前读。
再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?
事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。那么,事务 B 的更新语句会怎么处理呢?
事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。
事务的可重复读的能力是怎么实现的?
可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。
而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:
那么,我们再看一下,在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?
下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。
这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:
所以,这时候事务 A 查询语句返回的是 k=2。
显然地,事务 B 查询结果 k=3。
小结
InnoDB 的行数据有多个版本,每个数据版本有自己的 row trxid,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trxid 和一致性视图确定数据版本的可见性。
而当前读,总是读取已经提交完成的最新版本。
当然,MySQL 8.0 已经可以把表结构放在 InnoDB 字典里了,也许以后会支持表结构的可重复读。