- 贝叶斯网络与深度学习的结合:图像识别和分类
AI天才研究院
AI人工智能与大数据计算AI大模型企业级应用开发实战自然语言处理人工智能语言模型编程实践开发语言架构设计
本文我将为您撰写一篇关于"贝叶斯网络与深度学习的结合:图像识别和分类"的技术博客文章。这篇文章将深入探讨贝叶斯网络和深度学习在图像识别和分类领域的结合应用。我会遵循您提供的要求和结构模板,确保文章内容全面、深入且易于理解。让我们开始吧。贝叶斯网络与深度学习的结合:图像识别和分类关键词:贝叶斯网络、深度学习、图像识别、图像分类、概率推理、卷积神经网络、不确定性建模文章目录贝叶斯网络与深度学习的结合:
- c++基于BP神经网络的手写数字识别
鱼弦
机器学习设计类系统开发语言人工智能
鱼弦:CSDN内容合伙人、CSDN新星导师、全栈领域创作新星创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)基于BP(Backpropagation)神经网络的手写数字识别是一种常见的机器学习应用。下面我将为您提供原理的详细解释、使用场景的解释以及一些相关的文献材料链接。原理详细解释
- pytorch底层原理学习--Libtorch
libtorchlibtorch是PyTorch的C++实现版本,可以认为所有的pytorch底层都是由c++实现,而pytorch的所有C++实现就叫libtorch,也就是我们在pytorch官网getstart页面下载的c++pytorch版本。我们用python写的pytorch神经网络代码都会通过pybind11将python转换为libtorch的C++代码。[官方文档](PyTorc
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- [由浅入深理解神经网络] 2 张量流与反向传播
由浅入深理解神经网络2张量流与反向传播0前言1张量流和运算图2复合函数视角2.1复合函数求导2.1.1链式法则2.1.2多元函数的链式法则2.2前馈网络的反向传播2.3任意网络的反向传播3结语0前言在由浅入深理解神经网络1一个简单到极致的神经网络中,我们已经发现了训练神经网络最重要的一件事,那就是求梯度,然后优化算法利用梯度来调整网络参数.我们重写一下前面提到的一个通用的神经网络:y=f(x;θ)
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- 记忆力锻炼方法
穗余
记忆力计算机视觉人工智能深度学习
记忆力锻炼的核心在于科学方法、持续训练和健康生活习惯的结合。通过重复训练、关联记忆、充足睡眠等方式,可有效提升大脑信息处理与存储能力。关键在于长期坚持,并结合多种技巧形成适合自己的记忆策略。一、科学记忆方法重复训练与间隔复习大脑通过重复强化神经连接,但机械重复效率低。建议采用间隔重复法,例如学习新知识后,在1天、3天、1周等间隔复习,利用“遗忘曲线”规律巩固记忆。关联记忆法将新信息与已知内容关联,
- 《数字孪生+AI:如何模拟人类大脑的智能进化?》
嘉图明
AI合伙人人工智能机器学习深度学习大数据物联网
《数字孪生+AI:如何模拟人类大脑的智能进化?》大脑发展的五阶段理论与AI模型发展关系人类大脑在一生中经历五个主要发展阶段,从胎儿期一直到老年期阶段1(孕期0–10月):大脑迅速增长,大量神经元和神经连接形成这是大脑发育的基础阶段,孕期的营养和环境对神经系统发育至关重要。阶段2(出生–6岁):幼儿期大脑突飞猛进地构建神经元连接。2-3岁时大脑已达到成人大小的80%,3岁时突触连接数高达1000万亿
- 高通量多因子检测赋能胰腺癌生物标志物发现与临床转化
LabEx
Luminex液相芯片胰腺癌多因子检测斑蝥素乐备实labex科研服务
研究背景:胰腺癌作为恶性程度极高的消化系统肿瘤,其死亡率与发病率近乎持平的临床特征始终是医学领域的重大挑战。与多数癌症生存率稳步提升的趋势不同,胰腺癌的诊疗进展长期滞后——超过50%的患者确诊时已处于疾病晚期,对传统放化疗方案呈现显著耐药性。据美国2017年流行病学数据显示,胰腺癌患者5年相对生存率仅8%,尽管男性患者生存率呈现年均0.3%的微弱提升,但整体预后仍处于恶性肿瘤谱系的最底端,临床对创
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- 星闪多设备互联系统:OpenHarmony 赋能0.1ms级超低延迟生态
爱学习的小齐哥哥
HarmonyOS5Cordova鸿蒙开发harmonyos华为HarmonyOS5Cordova物联网
"当操作指令快过神经传导,人机边界开始溶解"——华为星闪技术白皮书行业痛点分析当前移动游戏生态面临外设连接的"三重枷锁":蓝牙5.3延迟瓶颈:理论最低7ms,实际15-30ms多设备干扰难题:手柄/耳机/眼镜同时连接时丢包率高达18%能耗失衡:传统连接功耗占游戏设备总耗电35%星闪(NearLink)技术突破graphLRA[星闪主芯片]-->B[1个主节点]B-->C[256个子设备]C-->D
- 十分钟了解人工智能的过去、现在与未来
ithadoop
人工智能人工智能
十分钟了解人工智能的过去、现在与未来人工智能(AI)作为重塑人类社会的技术革命,正以前所未有的速度改变着我们的工作方式、生活方式和思维方式。从1943年人工神经元模型的提出,到2025年AI应用场景的全面爆发,AI发展经历了多个关键阶段。在接下来的十分钟里,我们将通过图文解说,快速了解AI从萌芽到现在的历程,以及未来可能带来的机遇与挑战。一、人工智能的过去:从理论奠基到技术突破1.萌芽阶段(194
- InteraXon 与 Muse 脑波头环:开启脑机交互与脑健康新时代
Scivaro_陈耀栋
InteraXon脑机接口人因工程人工智能EEGInteraXonMuse脑电
作者:科采通|CSDN专栏一、公司简介InteraXon成立于2009年,总部位于加拿大多伦多,是一家专注于神经科技(Neurotechnology)的创新企业。其旗舰产品Muse脑波头环,是一款面向普通消费者和科研人员的脑电(EEG)设备,致力于通过脑机接口(BCI)技术帮助用户提升认知功能、减轻压力和改善睡眠。InteraXon由神经科学家、工程师和设计师组成的小团队起步,现已发展为拥有全球用
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- Zabbix和Prometheus的区别
运维小贺
zabbixprometheus运维
Zabbix监控平台监控概念对服务的管理,不能仅限于可用性。还需要服务可以安全、稳定、高效地运行。监控的目的:早发现、早治疗。被监控的资源类型:公开数据:对外开放的,不需要认证即可获取的数据私有数据:对外不开放,需要认证、权限才能获得的数据Zabbix是什么?Zabbix是个适用于监控硬件服务器的一款开源的分布式监控方案实施监控的几个方面:数据采集:使用agent(可安装软件的系统上)、SNMP(
- 从零开始大模型开发与微调:PyTorch中的卷积函数实现详解
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch中的卷积函数实现详解1.背景介绍1.1大模型开发的意义1.2卷积神经网络在大模型中的应用1.3PyTorch框架简介2.核心概念与联系2.1卷积的数学定义2.2卷积神经网络的组成2.2.1卷积层2.2.2池化层2.2.3全连接层2.3卷积与大模型的关系3.核心算法原理具体操作步骤3.1卷积的前向传播3.2卷积的反向传播3.3卷积的优化策略3.3.1卷积核大小
- PyTorch 中 nn.Linear() 参数详解与实战解析(gpt)
草莓奶忻
深度学习pytorchgpt人工智能
PyTorch中nn.Linear()参数详解与实战解析在使用PyTorch构建神经网络时,nn.Linear()是最常用也最基础的模块之一。它用于实现一个全连接层(FullyConnectedLayer),本质上就是对输入进行一次线性变换:y=xAT+by=xA^T+by=xAT+b本文将详细介绍nn.Linear()的参数含义、属性说明、初始化机制,并结合实际代码案例帮助你真正理解它的工作原理
- csigdiplus.dll ccb_pin_cert.dll CNCF2M50.dll cu4usb.dll CATCafPrint.dll COL32LU.dll ClassLibra
K9DMGY8SCC
经验分享
在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用MicrosoftVisualStudio编写的,所以这类软件的运行需要依赖微软VisualC++运行库,比如像QQ、迅雷、Adobe软件等等,如果没有安装VC++运行库或者安装的版本不完整,就可能会导致这些软件启动时报错,提示缺少库文件。如果我们遇到关于文件在系统使用过程中提示缺少找不到的情况,如果文件是属于运行库文件的
- 告别固定密钥!在单一账户下用 Cognito 实现 AWS CLI 的 MFA 单点登录
运维开发王义杰
aws信息安全系统运维aws云计算运维安全架构
大家好,很多朋友,特别是通过合作伙伴或服务商使用AWS的同学,可能会发现自己的IAMIdentityCenter功能受限,无法像在组织管理账户里那样轻松配置CLI的SSO(awsconfiguresso)。那么,我们就要放弃治疗,退回使用古老的、不安全的静态IAM用户密钥吗?绝对不行!今天,我就教大家如何利用AWSCognito,在自己的单一账户内,从零开始打造一个支持MFA的CLI登录门户,彻底
- 门控循环单元(GRU):LSTM 的轻量级高效 “记忆专家”
LNL13
grulstm机器学习
在探索完长短期记忆网络(LSTM)的神奇“记忆魔法”后,我们迎来了它的“近亲”——门控循环单元(GatedRecurrentUnit,简称GRU)。GRU就像是神经网络领域里的“精简版记忆大师”,它继承了LSTM处理长序列数据的优势,同时以更简洁的结构和更高的训练效率脱颖而出。今天,就让我们一同走进GRU的世界,看看它是如何在保留核心功能的同时实现“轻装上阵”的。一、GRU的诞生:简化与优化的智慧
- 互联网医院信息系统(HIS系统)如何解决远程诊疗的问题?
嘉讯科技HIS系统
科技智慧医疗人工智能网络数据库
在数字化浪潮的推动下,互联网医学正以其独特的优势逐步改变着传统的医疗模式。特别是在远程诊断和治疗领域,互联网医学显示出巨大的潜力和价值。然而,远程诊断和治疗也面临着许多挑战,例如医生和患者之间沟通不畅、隐私和安全问题以及诊断准确性有限。本文将深入探讨互联网医学如何解决远程诊疗的这些问题,以期为远程医疗的健康发展提供思路和建议。一、在远程诊疗中,医患沟通是提高医患沟通有效性的核心环节。然而,由于无法
- 深度学习之基于Pytorch卷积神经网络人民币面值识别
Q1744828575
pythonpytorchplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在日常生活和商业活动中,人民币面值识别技术具有重要的应用价值。传统的面值识别方法,如基于模板匹配或特征工程的方法,在面对复杂多变的图像环境时,往往难以达到理想的识别效果。随着深度学习技术的兴起,特别是卷积神经网络(ConvolutionalNeuralNetwo
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多