单向加密,主要是对明文的保密和摘要提取。算法包括MD5、SHA、HMAC等。
单向加密的安全性主要取决于加密结果的长度,对于同一加密算法,安全性与加密结果的长度成正比。单向加密是存在被破解的可能的,主要有暴力破解、查字典法破解和社会工学破解等。
MD5 Message-Digest Algorithm,一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。
MD5
值长度相同;MD5
值;MD5
值也会巨大差异;MD5
值,很小概率找到相同MD5
值相同的原数据;// MD5示例
#include
#include
#include
#include "openssl/md5.h"
#include "openssl/evp.h"
#include "openssl/bio.h"
#include "openssl/buffer.h"
std::string base64Encode(const char * input, int length, bool with_new_line)
{
BIO* bmem = NULL;
BIO* b64 = NULL;
BUF_MEM* bptr = NULL;
b64 = BIO_new(BIO_f_base64());
if(!with_new_line) {
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
}
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
char * buff = (char *)malloc(bptr->length + 1);
memcpy(buff, bptr->data, bptr->length);
buff[bptr->length] = 0;
BIO_free_all(b64);
return buff;
}
void md5(const std::string &srcStr, std::string &encodedStr, std::string &encodedHexStr)
{
// 调用md5哈希
unsigned char mdStr[33] = {0};
MD5((const unsigned char *)srcStr.c_str(), srcStr.length(), mdStr);
// 哈希后的字符串
encodedStr = std::string((const char *)mdStr);
// 哈希后的十六进制串 32字节
char buf[65] = {0};
char tmp[3] = {0};
for (int i = 0; i < 32; i++)
{
sprintf(tmp, "%02x", mdStr[i]);
strcat(buf, tmp);
}
buf[32] = '\0'; // 后面都是0,从32字节截断
encodedHexStr = std::string(buf);
}
int main(int argc, char **argv)
{
// 原始明文
std::string srcText = "test MD5";
std::string encryptText = "";
std::string encryptHexText = "";
std::string decryptText = "";
std::cout << "=== 原始明文 ===" << std::endl;
std::cout << srcText << std::endl;
std::cout << "=== md5哈希 ===" << std::endl;
md5(srcText, encryptText, encryptHexText);
std::cout << "摘要字符: " << base64Encode(encryptText.c_str(), encryptText.length(), false) << std::endl;
std::cout << "摘要串: " << encryptHexText << std::endl;
return 0;
}
执行结果:
=== 原始明文 ===
test MD5
=== md5哈希 ===
摘要字符: ISpMOJ207PrPYYF6cRz4kg==
摘要串: 212a4c389db4ecfacf61817a711cf892
安全散列算法(英语:Secure Hash Algorithm,缩写为SHA)是一个密码散列函数家族,是FIPS所认证的安全散列算法。能计算出一个数字消息所对应到的,长度固定的字符串(又称消息摘要)的算法。且若输入的消息不同,它们对应到不同字符串的机率很高。
主要包括SHA1、SHA2,SHA2包括SHA-224、SHA-256、SHA-384、SHA-512。
安全性:SHA2>SHA1>MD5
// SHA256示例
#include
#include
#include
#include "openssl/sha.h"
#include "openssl/evp.h"
#include "openssl/bio.h"
#include "openssl/buffer.h"
std::string base64Encode(const char * input, int length, bool with_new_line)
{
BIO* bmem = NULL;
BIO* b64 = NULL;
BUF_MEM* bptr = NULL;
b64 = BIO_new(BIO_f_base64());
if(!with_new_line) {
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
}
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
char * buff = (char *)malloc(bptr->length + 1);
memcpy(buff, bptr->data, bptr->length);
buff[bptr->length] = 0;
BIO_free_all(b64);
return buff;
}
void sha256(const std::string &srcStr, std::string &encodedStr, std::string &encodedHexStr)
{
// 调用sha256哈希
unsigned char mdStr[33] = {0};
SHA256((const unsigned char *)srcStr.c_str(), srcStr.length(), mdStr);
// 哈希后的字符串
encodedStr = std::string((const char *)mdStr);
// 哈希后的十六进制串 32字节
char buf[65] = {0};
char tmp[3] = {0};
for (int i = 0; i < 32; i++)
{
sprintf(tmp, "%02x", mdStr[i]);
strcat(buf, tmp);
}
buf[32] = '\0'; // 后面都是0,从32字节截断
encodedHexStr = std::string(buf);
}
int main(int argc, char **argv)
{
// 原始明文
std::string srcText = "test SHA256";
std::string encryptText;
std::string encryptHexText;
std::string decryptText;
std::cout << "=== 原始明文 ===" << std::endl;
std::cout << srcText << std::endl;
std::cout << "=== sha256哈希 ===" << std::endl;
sha256(srcText, encryptText, encryptHexText);
std::cout << "摘要字符: " << base64Encode(encryptText.c_str(), encryptText.length(), false) << std::endl;
std::cout << "摘要串: " << encryptHexText << std::endl;
return 0;
}
执行结果:
=== 原始明文 ===
test SHA256
=== sha256哈希 ===
摘要字符: pCOIxncw2JM02mtU4CvifgrwHQuR6NnwRH/mQsys0wU=
摘要串: a42388c67730d89334da6b54e02be27e
HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,它可以与任何迭代散列函数捆绑使用。
HMAC算法更像是一种加密算法,它引入了密钥,其安全性已经不完全依赖于所使用的Hash算法。
// HAMC示例
#include
#include
#include
#include "openssl/hmac.h"
using namespace std;
int HmacEncode(const char * algo,
const char * key, unsigned int key_length,
const char * input, unsigned int input_length,
unsigned char * &output, unsigned int &output_length) {
const EVP_MD * engine = NULL;
if(strcasecmp("sha512", algo) == 0) {
engine = EVP_sha512();
}
else if(strcasecmp("sha256", algo) == 0) {
engine = EVP_sha256();
}
else if(strcasecmp("sha1", algo) == 0) {
engine = EVP_sha1();
}
else if(strcasecmp("md5", algo) == 0) {
engine = EVP_md5();
}
else if(strcasecmp("sha224", algo) == 0) {
engine = EVP_sha224();
}
else if(strcasecmp("sha384", algo) == 0) {
engine = EVP_sha384();
}
else if(strcasecmp("sha", algo) == 0) {
engine = EVP_sha();
}
else if(strcasecmp("md2", algo) == 0) {
engine = EVP_md2();
}
else {
cout << "Algorithm " << algo << " is not supported by this program!" << endl;
return -1;
}
output = (unsigned char*)malloc(EVP_MAX_MD_SIZE);
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, key, strlen(key), engine, NULL);
HMAC_Update(&ctx, (unsigned char*)input, strlen(input));
HMAC_Final(&ctx, output, &output_length);
HMAC_CTX_cleanup(&ctx);
return 0;
}
int main(int argc, char **argv)
{
if(argc < 2) {
//参数指定hash算法,支持HmacEncode列举的那些
cout << "Please specify a hash algorithm!" << endl;
return -1;
}
char key[] = "dsfjgasdss;dsfzaasdsr;dsfjgasdsr"; //secret key
std::string data = "8ba5a744-f48d-4ba2-b93f-e223deqe32343dd2332";//要加密传输的数据
unsigned char * mac = NULL;
unsigned int mac_length = 0;
int ret = HmacEncode(argv[1], key, strlen(key), data.c_str(), data.length(), mac, mac_length);
if(0 == ret) {
cout << "Algorithm HMAC encode succeeded!" << endl;
}
else {
cout << "Algorithm HMAC encode failed!" << endl;
return -1;
}
cout << "mac length: " << mac_length << endl;
cout << "mac:";
for(int i = 0; i < (int)mac_length; i++) {
printf("%-03x", (unsigned int)mac[i]);
}
cout << endl;
if(mac) {
free(mac);
cout << "mac is freed!" << endl;
}
return 0;
}
执行结果:
[root@localhost ~]# ./HMACTest sha1
Algorithm HMAC encode succeeded!
mac length: 20
mac:2e a7 ac fa 3b 24 18 3 bf 2b fb b6 a4 89 f6 b4 e3 16 6d cc
mac is freed!
[root@localhost ~]# ./HMACTest md5
Algorithm HMAC encode succeeded!
mac length: 16
mac:6f 1b 72 7 95 3f ba fb f6 0 f2 66 c2 5e 2e b1
mac is freed!
[root@localhost ~]# ./HMACTest sha256
Algorithm HMAC encode succeeded!
mac length: 32
mac:38 c3 1e 8f a 44 39 a8 ec 4f 2a 43 fd 59 62 ba bb 19 46 f4 59 20 89 39 24 1d 35 aa af 6b de 9
mac is freed!
[root@localhost ~]#
各种算法得到的摘要长度如下:
算法 | 摘要长度(字节) |
---|---|
MD2 | 16 |
MD5 | 16 |
SHA | 20 |
SHA1 | 20 |
SHA224 | 28 |
SHA256 | 32 |
SHA384 | 48 |
SHA512 | 64 |
根据密钥的对称性,分为对称加密和非对称加密。
数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。
密钥较小(一般小于256bit),密钥越大,加密越强,但加密解密越慢。
优势:算法公开、计算量小,加密速度快、加密效率高,适用于大量数据的加密;
劣势:同一套密钥,安全性较低;
一种块加密算法(Block cipher),其密钥默认长度为 56 位。块加密或者叫分组加密,这种加密方法是把明文分成几个固定大小的 block 块,然后分别对其进行加密。
DES 加密算法是对密钥进行保密,而公开算法,包括加密和解密算法。这样,只有掌握了和发送方相同密钥的人才能解读由 DES加密算法加密的密文数据。因此,破译 DES 加密算法实际上就是 搜索密钥的编码。对于 56 位长度的 密钥 来说,如果用 穷举法 来进行搜索的话,其运算次数为 2 56 2 ^{56} 256 次。
// DES示例
#include
#include
#include
#include
#include "openssl/des.h"
#include "openssl/evp.h"
#include "openssl/bio.h"
#include "openssl/buffer.h"
using namespace std;
std::string base64Encode(const char * input, int length, bool with_new_line)
{
BIO* bmem = NULL;
BIO* b64 = NULL;
BUF_MEM* bptr = NULL;
b64 = BIO_new(BIO_f_base64());
if(!with_new_line) {
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
}
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
char * buff = (char *)malloc(bptr->length + 1);
memcpy(buff, bptr->data, bptr->length);
buff[bptr->length] = 0;
BIO_free_all(b64);
return buff;
}
// 加密 ecb模式
std::string des_encrypt(const std::string &clearText, const std::string &key)
{
std::string cipherText; // 密文
DES_cblock keyEncrypt;
memset(keyEncrypt, 0, 8);
// 构造补齐后的密钥
if (key.length() <= 8)
memcpy(keyEncrypt, key.c_str(), key.length());
else
memcpy(keyEncrypt, key.c_str(), 8);
// 密钥置换
DES_key_schedule keySchedule;
DES_set_key_unchecked(&keyEncrypt, &keySchedule);
// 循环加密,每8字节一次
const_DES_cblock inputText;
DES_cblock outputText;
std::vector vecCiphertext;
unsigned char tmp[8];
for (int i = 0; i < (int)clearText.length() / 8; i++)
{
memcpy(inputText, clearText.c_str() + i * 8, 8);
DES_ecb_encrypt(&inputText, &outputText, &keySchedule, DES_ENCRYPT);
memcpy(tmp, outputText, 8);
for (int j = 0; j < 8; j++)
vecCiphertext.push_back(tmp[j]);
}
if (clearText.length() % 8 != 0)
{
int tmp1 = clearText.length() / 8 * 8;
int tmp2 = clearText.length() - tmp1;
memset(inputText, 0, 8);
memcpy(inputText, clearText.c_str() + tmp1, tmp2);
// 加密函数
DES_ecb_encrypt(&inputText, &outputText, &keySchedule, DES_ENCRYPT);
memcpy(tmp, outputText, 8);
for (int j = 0; j < 8; j++)
vecCiphertext.push_back(tmp[j]);
}
cipherText.clear();
cipherText.assign(vecCiphertext.begin(), vecCiphertext.end());
return cipherText;
}
// 解密 ecb模式
std::string des_decrypt(const std::string &cipherText, const std::string &key)
{
std::string clearText; // 明文
DES_cblock keyEncrypt;
memset(keyEncrypt, 0, 8);
if (key.length() <= 8)
memcpy(keyEncrypt, key.c_str(), key.length());
else
memcpy(keyEncrypt, key.c_str(), 8);
DES_key_schedule keySchedule;
DES_set_key_unchecked(&keyEncrypt, &keySchedule);
const_DES_cblock inputText;
DES_cblock outputText;
std::vector vecCleartext;
unsigned char tmp[8];
for (int i = 0; i < (int)cipherText.length() / 8; i++)
{
memcpy(inputText, cipherText.c_str() + i * 8, 8);
DES_ecb_encrypt(&inputText, &outputText, &keySchedule, DES_DECRYPT);
memcpy(tmp, outputText, 8);
for (int j = 0; j < 8; j++)
vecCleartext.push_back(tmp[j]);
}
if (cipherText.length() % 8 != 0)
{
int tmp1 = cipherText.length() / 8 * 8;
int tmp2 = cipherText.length() - tmp1;
memset(inputText, 0, 8);
memcpy(inputText, cipherText.c_str() + tmp1, tmp2);
// 解密函数
DES_ecb_encrypt(&inputText, &outputText, &keySchedule, DES_DECRYPT);
memcpy(tmp, outputText, 8);
for (int j = 0; j < 8; j++)
vecCleartext.push_back(tmp[j]);
}
clearText.clear();
clearText.assign(vecCleartext.begin(), vecCleartext.end());
return clearText;
}
int main(int argc, char **argv)
{
// 原始明文
std::string srcText = "test DES";
std::string encryptText;
std::string encryptHexText;
std::string decryptText;
std::cout << "=== 原始明文 ===" << std::endl;
std::cout << srcText << std::endl;
std::cout << "=== des加解密 ===" << std::endl;
std::string desKey = "12345";
encryptText = des_encrypt(srcText, desKey);
std::cout << "加密字符: " << std::endl;
std::cout << base64Encode(encryptText.c_str(), encryptText.length(), false) << std::endl;
decryptText = des_decrypt(encryptText, desKey);
std::cout << "解密字符: " << std::endl;
std::cout << decryptText << std::endl;
return 0;
}
执行结果:
=== 原始明文 ===
test DES
=== des加解密 ===
加密字符:
vmfC/L3cGBo=
解密字符:
test DES
3DES
(即Triple DES)是DES
向AES
过渡的加密算法,它使用3条56位的密钥对数据进行三次加密。是DES
的一个更安全的变形。它以DES
为基本模块,通过组合分组方法设计出分组加密算法。比起最初的DES
,3DES
更为安全。密钥长度默认为168
位,还可以选择128
位。
#include
#include
#include
#include
#include "openssl/des.h"
#include "openssl/evp.h"
#include "openssl/bio.h"
#include "openssl/buffer.h"
using namespace std;
std::string base64Encode(const char * input, int length, bool with_new_line)
{
BIO* bmem = NULL;
BIO* b64 = NULL;
BUF_MEM* bptr = NULL;
b64 = BIO_new(BIO_f_base64());
if(!with_new_line) {
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
}
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
char * buff = (char *)malloc(bptr->length + 1);
memcpy(buff, bptr->data, bptr->length);
buff[bptr->length] = 0;
BIO_free_all(b64);
return buff;
}
int Des3DesEncrypt(const std::string& rand_key, const std::string& in, std::string& out)
{
char out_array[10240];
char in_array[10240];
memset(out_array, 0, 10240);
memset(in_array, 0, 10240);
DES_key_schedule keyschedc1;
DES_key_schedule keyschedc2;
DES_key_schedule keyschedc3;
if (rand_key.size() < 24)
{
return -1;
}
DES_set_key((DES_cblock *)rand_key.substr(0,8).c_str(), &keyschedc1);
DES_set_key((DES_cblock *)rand_key.substr(8,8).c_str(), &keyschedc2);
DES_set_key((DES_cblock *)rand_key.substr(16,8).c_str(), &keyschedc3);
//数据不足8位的时候后面需要补齐 如果是取余为0,则补8个0
int data_rest = in.size()%8;
char ch = 8-data_rest;
int len = (in.size()/8 + 1)*8;
for (int i=0; i<(int)in.size(); ++i)in_array[i] = in.at(i);
memset(in_array + in.size(), ch, 8 - data_rest);
for (int i=0; i
执行结果:
=== 原始明文 ===
test 3DES
=== 3des加解密 ===
加密字符:
/XnXVk51IzF+TP1+Xi3Z7g==
AES 是块加密算法,也就是说,每次处理的数据是一块(16 字节、128位),当数据不是 16 字节的倍数时填充,这就是所谓的分组密码(区别于基于比特位的流密码),16 字节是分组长度。AES 共有 ECB、CBC 等多种模式。
// AES示例
#include
#include
#include
#include
#include "openssl/aes.h"
#include "openssl/evp.h"
#include "openssl/bio.h"
#include "openssl/buffer.h"
using namespace std;
std::string base64Encode(const char * input, int length, bool with_new_line)
{
BIO* bmem = NULL;
BIO* b64 = NULL;
BUF_MEM* bptr = NULL;
b64 = BIO_new(BIO_f_base64());
if(!with_new_line) {
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
}
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
char * buff = (char *)malloc(bptr->length + 1);
memcpy(buff, bptr->data, bptr->length);
buff[bptr->length] = 0;
BIO_free_all(b64);
return buff;
}
// 加密
void AesEncrypt(const unsigned char *in, unsigned char *out, int length, const unsigned char *key, unsigned char *ivec)
{
AES_KEY encrypt_key;
// 设置加密密钥
if(AES_set_encrypt_key((const unsigned char*)key, 128, &encrypt_key) < 0)
{
cout << "AES_set_encrypt_key failed" << endl;
return ;
}
AES_cbc_encrypt(in, out, length, &encrypt_key, ivec, AES_ENCRYPT);
}
// 解密
void AesDecrypt(const unsigned char *in, unsigned char *out, int length, const unsigned char *key, unsigned char *ivec)
{
AES_KEY decrypt_key;
if (AES_set_decrypt_key((const unsigned char*)key, 128, &decrypt_key) < 0)
{
cout << "AES_set_decrypt_key failed" << endl;
return ;
}
AES_cbc_encrypt(in, out, length, &decrypt_key, ivec, AES_DECRYPT);
}
int main(int argc, char **argv)
{
unsigned char key[16] = "123456789012345";
unsigned char ivec[16] = "123456789012345";
unsigned char aes_in[20] = "123456act012345678";
unsigned char aes_out[32];
AesEncrypt(aes_in, aes_out, 20, key, ivec); //加密
cout << "Encrypt result:" <
执行结果:
Encrypt result:zVrnKAdkWqHp4SAvj/8wfhuyVQImEemAqhO0feTzazE=
Decrypt result:123456act012345678
非对称加密算法需要两个密钥来进行加密和解密,分别是公钥和私钥。公钥和私钥成对存在,如果用公钥对数据进行加密,那么只有使用对应的私钥才能解密。
算法强度复杂、安全性依赖于算法与密钥。但是由于其算法复杂,使得加密解密速度没有对称加密解密的速度快。
加解密和数字签名验证。
关于数字前面和数字证书,可参考:https://blog.csdn.net/qq_34827674/article/details/119081396
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作RSA公开密钥密码体制。所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。
RSA的算法涉及三个参数,n、e1、e2。其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。e1和e2是一对相关的值,e1可以任意取。
加密盐也是比较常听到的一个概念,盐就是一个随机字符串用来和我们的加密串拼接后进行加密。加盐主要是为了提供加密字符串的安全性。假如有一个加盐后的加密串,黑客通过一定手段这个加密串,他拿到的明文,并不是我们加密前的字符串,而是加密前的字符串和盐组合的字符串,这样相对来说又增加了字符串的安全性。
// RSA代码示例
#include
#include
#include
#include
#include "openssl/rsa.h"
#include "openssl/pem.h"
#include "openssl/evp.h"
#include "openssl/bio.h"
#include "openssl/buffer.h"
using namespace std;
std::string base64Encode(const char * input, int length, bool with_new_line)
{
BIO* bmem = NULL;
BIO* b64 = NULL;
BUF_MEM* bptr = NULL;
b64 = BIO_new(BIO_f_base64());
if(!with_new_line) {
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
}
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
char * buff = (char *)malloc(bptr->length + 1);
memcpy(buff, bptr->data, bptr->length);
buff[bptr->length] = 0;
BIO_free_all(b64);
return buff;
}
#define KEY_LENGTH 2048 // 密钥长度
#define PUB_KEY_FILE "pubkey.pem" // 公钥路径
#define PRI_KEY_FILE "prikey.pem" // 私钥路径
// 函数方法生成密钥对
void generateRSAKey(std::string strKey[2])
{
// 公私密钥对
size_t pri_len;
size_t pub_len;
char *pri_key = NULL;
char *pub_key = NULL;
// 生成密钥对
RSA *keypair = RSA_generate_key(KEY_LENGTH, RSA_3, NULL, NULL);
BIO *pri = BIO_new(BIO_s_mem());
BIO *pub = BIO_new(BIO_s_mem());
PEM_write_bio_RSAPrivateKey(pri, keypair, NULL, NULL, 0, NULL, NULL);
PEM_write_bio_RSAPublicKey(pub, keypair);
// 获取长度
pri_len = BIO_pending(pri);
pub_len = BIO_pending(pub);
// 密钥对读取到字符串
pri_key = (char *)malloc(pri_len + 1);
pub_key = (char *)malloc(pub_len + 1);
BIO_read(pri, pri_key, pri_len);
BIO_read(pub, pub_key, pub_len);
pri_key[pri_len] = '\0';
pub_key[pub_len] = '\0';
// 存储密钥对
strKey[0] = pub_key;
strKey[1] = pri_key;
// 存储到磁盘(这种方式存储的是begin rsa public key/ begin rsa private key开头的)
FILE *pubFile = fopen(PUB_KEY_FILE, "w");
if (pubFile == NULL)
{
//assert(false);
return;
}
fputs(pub_key, pubFile);
fclose(pubFile);
FILE *priFile = fopen(PRI_KEY_FILE, "w");
if (priFile == NULL)
{
//assert(false);
return;
}
fputs(pri_key, priFile);
fclose(priFile);
// 内存释放
RSA_free(keypair);
BIO_free_all(pub);
BIO_free_all(pri);
free(pri_key);
free(pub_key);
}
// 命令行方法生成公私钥对(begin public key/ begin private key)
// 找到openssl命令行工具,运行以下
// openssl genrsa -out prikey.pem 1024
// openssl rsa -in privkey.pem - pubout -out pubkey.pem
// 公钥加密
std::string rsa_pub_encrypt(const std::string &clearText, const std::string &pubKey)
{
std::string strRet;
RSA *rsa = NULL;
BIO *keybio = BIO_new_mem_buf((unsigned char *)pubKey.c_str(), -1);
// 此处有三种方法
// 1, 读取内存里生成的密钥对,再从内存生成rsa
// 2, 读取磁盘里生成的密钥对文本文件,在从内存生成rsa
// 3,直接从读取文件指针生成rsa
// RSA* pRSAPublicKey = RSA_new();
rsa = PEM_read_bio_RSAPublicKey(keybio, &rsa, NULL, NULL);
int len = RSA_size(rsa);
char *encryptedText = (char *)malloc(len + 1);
memset(encryptedText, 0, len + 1);
// 加密函数
int ret = RSA_public_encrypt(clearText.length(), (const unsigned char*)clearText.c_str(), (unsigned char*)encryptedText, rsa, RSA_PKCS1_PADDING);
if (ret >= 0)
strRet = std::string(encryptedText, ret);
// 释放内存
free(encryptedText);
BIO_free_all(keybio);
RSA_free(rsa);
return strRet;
}
// 私钥解密
std::string rsa_pri_decrypt(const std::string &cipherText, const std::string &priKey)
{
std::string strRet;
RSA *rsa = RSA_new();
BIO *keybio;
keybio = BIO_new_mem_buf((unsigned char *)priKey.c_str(), -1);
// 此处有三种方法
// 1, 读取内存里生成的密钥对,再从内存生成rsa
// 2, 读取磁盘里生成的密钥对文本文件,在从内存生成rsa
// 3,直接从读取文件指针生成rsa
rsa = PEM_read_bio_RSAPrivateKey(keybio, &rsa, NULL, NULL);
int len = RSA_size(rsa);
char *decryptedText = (char *)malloc(len + 1);
memset(decryptedText, 0, len + 1);
// 解密函数
int ret = RSA_private_decrypt(cipherText.length(), (const unsigned char*)cipherText.c_str(), (unsigned char*)decryptedText, rsa, RSA_PKCS1_PADDING);
if (ret >= 0)
strRet = std::string(decryptedText, ret);
// 释放内存
free(decryptedText);
BIO_free_all(keybio);
RSA_free(rsa);
return strRet;
}
int main(int argc, char **argv)
{
// 原始明文
std::string srcText = "test RSA";
std::string encryptText;
std::string encryptHexText;
std::string decryptText;
std::cout << "=== 原始明文 ===" << std::endl;
std::cout << srcText << std::endl;
std::cout << "=== rsa加解密 ===" << std::endl;
std::string key[2];
generateRSAKey(key);
std::cout << "公钥: " << std::endl;
std::cout << key[0] << std::endl;
std::cout << "私钥: " << std::endl;
std::cout << key[1] << std::endl;
encryptText = rsa_pub_encrypt(srcText, key[0]);
std::cout << "加密字符: " << std::endl;
std::cout << base64Encode(encryptText.c_str(), encryptText.length(), false) << std::endl;
decryptText = rsa_pri_decrypt(encryptText, key[1]);
std::cout << "解密字符: " << std::endl;
std::cout << decryptText << std::endl;
return 0;
}
执行结果:
=== 原始明文 ===
test RSA
=== rsa加解密 ===
公钥:
-----BEGIN RSA PUBLIC KEY-----
MIIBCAKCAQEAsWHxQu2SKLA/A2esf5xlDg3wapfisrBJjv2MaYU5D1MK/pkWDYCe
7U5IMKtaDKs3ScRdozId7P1NYlPkjCorwaGe1c48+BCwnEh4YHZfozQ88L7MWNUy
cIyzgu5TdI0iWJQn9zyYW5Tl8HIOY2wmHAfZcC1GqgGQANZUPHX7jZWvosuO1BVg
AIa6jVNRiAWG3U3LqN2pHOx7HZrghLYW+QQw8HXrJmmeX6hVdToapTcME7cVdHiQ
JgwTMdQbLziT6/qTBgdLI2ODpWQ2aYSkxOEuI1zgsezmjl22Q1vGwQLyW15NNmzw
MwEs3n8h90HjHdmb9CoLfCtYSAbX/w71EQIBAw==
-----END RSA PUBLIC KEY-----
私钥:
-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEAsWHxQu2SKLA/A2esf5xlDg3wapfisrBJjv2MaYU5D1MK/pkW
DYCe7U5IMKtaDKs3ScRdozId7P1NYlPkjCorwaGe1c48+BCwnEh4YHZfozQ88L7M
WNUycIyzgu5TdI0iWJQn9zyYW5Tl8HIOY2wmHAfZcC1GqgGQANZUPHX7jZWvosuO
1BVgAIa6jVNRiAWG3U3LqN2pHOx7HZrghLYW+QQw8HXrJmmeX6hVdToapTcME7cV
dHiQJgwTMdQbLziT6/qTBgdLI2ODpWQ2aYSkxOEuI1zgsezmjl22Q1vGwQLyW15N
NmzwMwEs3n8h90HjHdmb9CoLfCtYSAbX/w71EQIBAwKCAQB2QUuB87bFytSs78hV
Eu4JXqBHD+x3IDEJ/l2briYKN1ypu2QJAGnziYV1x5Fdx3oxLZPCIWlIqN5BjUMI
HB0rwRSOiX36tcsS2vrq+ZUXeCigfzLl43b1syJXSYz4XhbluBqk0xA9De6gTAmX
nW69WpD1c4RxVmAAjuLS+VJeYq49prBFXw3AHjqfZgUYp0vcwGg4DdW1D6/vuhzW
fGaHbXOgBCxKt3vLmPB57VKrjUpH8p5u2BUIhqaOv4avLBCAXozr9IGSM43R6/wY
/H6fciToiY263vnoYpCRmnl7WN+9/wtf/Tz/DDq5MBl3tmMexBxsAD5HbRnjbZUL
qXVDAoGBANlUo38itg2NlVNahGYH48A+etYEAeG+OAerv5oIqU3b4tO/HjFExWil
FzERlssm4h+jQasL3LVi3OGYrDVxwrB4rcJAZg3X0KgGPwU60pigb7/t/Y5mwD5w
cnb0fxaEyfNYBrztU4yVYgSzDQydVejbtFP9I/Y+cJ9EyFI2vn2XAoGBANDxrgdJ
UL3SxA9DtePbJtTTsllQxwbPHOuKRBs6Ui9R/S/BUXdxkPwJK7usv1N9AP0EiXzC
V7s2ZTfDCJu2s8qyvv1jsnrwRYbkQzcJN041RjbYkP2y3jFBV2Z0dPoDM69mWP85
HYgfDNAVqe8mWmWT/x1VBbfSlxIuGiY20keXAoGBAJDjF6oXJAkJDjeRrZlal9V+
/I6tVpZ+0AUdKmawcN6SlzfUvsuDLkXDZMthDzIZ7BUXgRyykyOXPeu7HXj2gcr7
HoGARAk6ixqu1K4nNxBq9SqeqQmZ1X71oaSi/2RYhqI6ryieN7MOQVh3Xgho4/CS
eDf+F/l+9b+DMDbPKakPAoGBAItLyVow4H6MgrTXzpfnbziNIZDghK80vfJcLWd8
Nso2qMqA4PpLtf1bcn0d1OJTVf4DBlMsOnzO7iUssGfPIoch1KjtIadK2QSYLM9b
ejQjhCSQYKkh6XYrj5mi+KaszR+ZkKomE7AUszVjxp9u5u5iqhOOA8/hugwevBl5
4YUPAoGAaDgxWJb12UsZaYclsbeBxJ7gLCxLG3hnWBURuNmImbTuUL3eK3yhD6j6
3g9r0oT9mTkLB+f5r4ODDD7yDOWYZbp4JsyPAFp2gva4IP+twA391FRg0p60roKO
AZCQ4dCyvnL6V6CnqTFUVhS9H9I7NCZHjUL+eFTAiL+7eFFPuBs=
-----END RSA PRIVATE KEY-----
加密字符:
XpcptvI+vqqk34oNyppgQ22faFmilhVk3THl3we+kPPvIsMuvL+n2jYZhpBRmgIe5v8dqm8wul8ZU03L3INNMrjEcdU2P0KQFb5dk0ONe9ySm/B6UsZSJuOzT/+FBlpGK63Q94cRWb4JNp3rzbm+IF+m1lS7GtmYthh0axnhdJasm85U9qmiDDT5YX/8VGbvtygMqtIsVq7ZBDCjor3lc8LZR5/d/oPQ5mXNaA6e9CUuc09mwoRNzWHvCBZJRYarOAIkm4XMFwEGDVWX6ca1gZJt/13vtYPrrKYt7i96Z8ANFwl8kipNczK8GGWskmF0auenZD1v/Rh+kof3YGBotg==
解密字符:
test RSA
参考:
常用加密算法:https://blog.csdn.net/tianshan2010/article/details/106170662/
md5(base64):https://blog.csdn.net/w1820020635/article/details/88350680