- 数字孪生技术为UI前端注入新活力:实现产品设计的沉浸式体验
ui设计前端开发老司机
ui
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:从“平面交互”到“沉浸体验”的UI革命当用户在电商APP中翻看3D家具模型却无法感知其与自家客厅的匹配度,当设计师在2D屏幕上绘制汽车内饰却难以预判实际乘坐体验——传统UI设计的“平面化、静态化、割裂感”
- 提升企业级数据处理效率!TDengine 四个集群优化点详解
TDengine (老段)
TDengine运维大数据数据库物联网时序数据库服务器运维tdengine
为了帮助企业更好地进行大数据处理,我们在此前TDengine3.x系列版本中进行了几项与集群相关的优化和新功能开发,以提升集群的稳定性和在异常情况下的恢复能力。这些优化包括clusterID隔离、leaderrebalance、raftlearner和restorednode。本文将对这几项重要优化进行详细阐述,以解答企业在此领域的疑问,并帮助大家更好地应对相关挑战。clusterID隔离问题fi
- 中国银联豪掷1亿采购海光C86架构服务器
信创新态势
海光芯片C86国产芯片海光信息
近日,中国银联国产服务器采购大单正式敲定,基于海光C86架构的服务器产品中标,项目金额超过1亿元。接下来,C86服务器将用于支撑中国银联的虚拟化、大数据、人工智能、研发测试等技术场景,进一步提升其业务处理能力、用户服务效率和信息安全水平。作为我国重要的银行卡组织和金融基础设施,中国银联在全球183个国家和地区设有银联受理网络,境内外成员机构超过2600家,是世界三大银行卡品牌之一。此次中国银联发力
- 全面探索Kafka:架构、应用与流处理
Kafka:企业级消息系统与流处理平台的深度解析ApacheKafka作为分布式流处理平台,广泛应用于大数据处理和实时分析领域。本文将基于其官方文档,详细探讨Kafka的核心功能、应用场景以及如何进行有效管理。背景简介Kafka作为高吞吐量的消息系统,支持企业级的发布-订阅模式。它能够处理大量实时数据,并支持高并发读写操作。本文将依据Kafka官方文档的内容,逐层深入,从入门到高级应用,帮助读者全
- Flink时间窗口详解
bxlj_jcj
Flinkflink大数据
一、引言在大数据流处理的领域中,Flink的时间窗口是一项极为关键的技术,想象一下,你要统计一个电商网站每小时的订单数量。由于订单数据是持续不断产生的,这就形成了一个无界数据流。如果没有时间窗口的概念,你就需要处理无穷无尽的数据,难以进行有效的统计分析。而时间窗口的作用,就是将这无界的数据流按照时间维度切割成一个个有限的“数据块”,方便我们对这些数据进行处理和分析。比如,我们可以定义一个1小时的时
- 探索实时流处理的未来:Kafka Streams 深度指南
秋或依
探索实时流处理的未来:KafkaStreams深度指南项目介绍欢迎进入KafkaStreams:实时流处理的世界!这不仅仅是一本书,更是一个通往流处理领域深层奥秘的门户。由PrashantPandey编著,这本书以ApacheKafka2.1中的KafkaStreams库为核心,为读者铺就了一条从理解基础概念到熟练掌握KafkaStreams编程的路径。无论是软件工程师、数据架构师,还是对大数据处
- Elasticsearch搜索引擎存储:从原理到实践的全景解析
Python×CATIA工业智造
搜索引擎elasticsearch大数据
引言在大数据时代,数据规模呈指数级增长,传统数据库的模糊查询、实时分析能力逐渐成为瓶颈。Elasticsearch(简称ES)凭借其分布式架构、实时搜索和灵活的数据分析能力,成为企业级搜索与存储的核心引擎。截至2025年,ES在全球日志分析、电商搜索、实时监控等场景的市场占有率超过60%。本文将从存储架构、核心技术、应用场景及优化策略四个维度,深入解析Elasticsearch的设计哲学与实践价值
- 【Kafka专栏 13】Kafka的消息确认机制:不是所有的“收到”都叫“确认”!
作者名称:夏之以寒作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:夏之以寒-kafka专栏专栏介绍:本专栏旨在以浅显易懂的方式介绍Kafka的基本概念、核心组件和使用场景,一步步构建起消息队列和流处理的知识体系,无论是对分布式系统感兴趣,还是准备在大数据领域迈出第一步,本专栏都提供所需的一切资源、指导,以及相关面试题,立刻免费订阅,开启Kafka学习之旅!
- Hive简介
文章目录Hive简介Hive特点Hive和RDBMS的对比Hive的架构Hive的数据组织Hive数据类型Hive简介1、Hive由Facebook实现并开源2、是基于Hadoop的一个数据仓库工具3、可以将结构化的数据映射为一张数据库表4、并提供HQL(HiveSQL)查询功能5、底层数据是存储在HDFS上6、Hive的本质是将SQL语句转换为MapReduce任务运行7、使不熟悉MapRedu
- C语言学生成绩管理系统<;自创>;(功能7有小错误,但可运行)
han_xue_feng
java
腾讯云加速企业和个人开发创新公开直播预告直播预告:07/18(周四)15:00-16:00随着人工智能与大模型的蓬勃发展,我们正步入一个由技微信实习第一天周五入职,早上早早来到了公司,发现好多人都没上班,到十点才陆陆续续有人来,办理完入职后,mentor中联夏令营遗憾没有入选不过hr的回复真的很好,辛苦啦#提前批简历挂麻了怎么办##机械制造投递记录#大数据开发的工作有点过于简单了吧sq大数据开发的
- Python爬虫:从图片或扫描文档中提取文字数据的完整指南
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言数据挖掘c++
1.引言随着大数据技术的不断进步,图像数据逐渐成为了许多行业中重要的数据源之一。图像中不仅包含了丰富的视觉信息,还可能蕴含着大量的文字数据。对于科研、企业、政府等多个领域而言,如何从图片或扫描文档中提取出有价值的文字信息是一个亟待解决的问题。在这一过程中,OCR(OpticalCharacterRecognition,光学字符识别)技术成为了解决这一问题的重要工具。在本文中,我们将探讨如何使用Py
- 【C语言经典面试题】memcpy函数有没有更高效的拷贝实现方法?
架构师李肯
嵌入式物联网开发进阶c语言面试性能优化
【C语言经典面试题】memcpy函数有没有更高效的拷贝实现方法?我相信大部分初中级C程序员在面试的过程中,可能都被问过关于memcpy函数的问题,甚至需要手撕memcpy。本文从另一个角度带你领悟一下memcpy的面试题,你可以看看是否能接得住?文章目录1写在前面2源码实现2.1函数申明2.2简单的功能实现2.3满足大数据量拷贝的功能实现3源码测试4小小总结5更多分享1写在前面假如你遇到下面的面试
- python基于Hadoop的NBA球员大数据分析与可视化系统
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 大数据技术之集群数据迁移
dfs.namenode.rpc-address.nameservice1.namenode30hadoop104:8020dfs.namenode.rpc-address.nameservice1.namenode37hadoop106:8020dfs.namenode.http-address.nameservice1.namenode30hadoop104:9870dfs.namenode.
- HIVE(二)
2301_78012738
hive数据仓库
目录访问HIVE的三种方式DDLDML数据操作向表中装载数据数据导出常用函数Like和RLike分组Join排序分区表和分桶表访问HIVE的三种方式启动Hive命令,CtrlC退出客户端,执行测试语句,与sql一致[wyc@hadoop102hive]$bin/hive经验小结:在hive中执行语句报错:ExecutionError,returncode2fromorg.apache.hadoop
- 如何通过YashanDB优化企业大数据处理流程
数据库
在当今数据驱动的商业环境中,企业面临着巨大的数据处理挑战。性能瓶颈、数据一致性问题和可扩展性需求使得大数据处理成为一项复杂任务。作为一种新兴的数据库管理系统,YashanDB以其独特的架构设计和强大的数据处理能力,在解决这些挑战方面提供了有效的手段。本文旨在探讨如何利用YashanDB优化大数据处理流程,为企业提供高效、可靠的解决方案。YashanDB的体系架构与部署形态YashanDB支持多种部
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- 如何通过YashanDB提升客户体验
数据库
如何优化查询速度?这是许多企业在使用数据库技术时常常会遇到的问题。查询速度的快慢直接影响到用户的体验,尤其是在大数据量和高并发的使用场景中。顾客期望迅速获取信息,若响应时间过长,可能导致客户流失。因此,优化数据库的性能成为提升客户体验的关键举措之一。YashanDB作为一种高性能的数据库技术架构,提供了多种优化机制,以提升系统的查询速度和整体处理能力。多种部署架构YashanDB支持多种部署架构,
- 如何通过YashanDB数据库实现企业级数据分区管理?
数据库
在当今大数据时代,企业面临着海量数据的管理和优化访问的问题。如何有效地组织和划分庞大的数据集,以提升查询性能和运维效率,成为数据库系统设计的核心挑战。数据分区技术作为解决大规模数据处理的关键手段,能够显著减少无关数据的访问,优化资源利用率。本文聚焦于YashanDB数据库,详细解析其数据分区管理的实现机制及应用,为企业级应用提供高效、灵活的数据分区解决方案。YashanDB中的数据分区基础Yash
- 国产开源高性能对象存储RustFS保姆级上手指南
光爷不秃
对象存储rust国产开源软件rust云计算开源软件github开源数据仓库database
在云计算与大数据爆发的时代,企业和开发者对存储方案的要求愈发严苛——不仅要能扛住海量数据的读写压力,还得兼顾安全性、可扩展性和兼容性。今天给大家介绍一款基于Rust语言开发的开源分布式对象存储系统——RustFS,它不仅是MinIO的国产化优秀替代方案,更是AI、大数据和云原生场景的理想之选。本文将从基础介绍到实战操作,带大家快速上手这款"优雅的存储解决方案"。一、RustFS核心特性解析Rust
- 通过YashanDB提升大数据处理能力的指南
数据库
数据的急剧增长给数据库技术领域带来了诸多挑战,包括性能瓶颈、数据一致性问题及处理效率低下等。为了应对这些挑战,企业需采取有效的技术手段来提升大数据处理能力。YashanDB作为一款高性能的数据库产品,通过其先进的体系架构、优化的数据存储形式以及强大的并发控制能力,有效地提升了大数据环境下的处理性能。本文旨在为技术人员和决策者提供深入的技术分析和可操作的建议,通过YashanDB的功能特性来实现大数
- Java多线程实战指南:从基础到高并发的核心技术解析
添砖Java中
javapython开发语言springbootspringcloudspring
一、为什么必须掌握多线程?在单核CPU时代,多线程主要用于提高程序响应速度;在如今的多核处理器时代,多线程已成为榨干硬件性能的必备技能。无论是高并发Web服务器、实时数据处理系统,还是游戏引擎,都离不开多线程技术的支撑。典型案例:电商秒杀系统:1秒内处理10万+请求大数据处理:并行计算TB级数据金融交易系统:毫秒级订单撮合二、线程创建的四大核心方式1.继承Thread类(不推荐)classMyTh
- 安全运维的 “五层防护”:构建全方位安全体系
KKKlucifer
安全运维
在数字化运维场景中,异构系统复杂、攻击手段隐蔽等挑战日益突出。保旺达基于“全域纳管-身份认证-行为监测-自动响应-审计溯源”的五层防护架构,融合AI、零信任等技术,构建全链路安全运维体系,以下从技术逻辑与实践落地展开解析:第一层:全域资产纳管——筑牢安全根基挑战云网基础设施包含分布式计算(Hadoop/Spark)、数据流处理(Storm/Flink)等异构组件,通信协议繁杂,传统方案难以全面纳管
- 3D 可视化技术开启污水治理全新发展阶段
广州华锐视点
3d
3D可视化大屏展示技术在污水厂的应用,已然开启了污水处理的全新篇章。它不仅为污水厂解决了当下管理和展示的难题,更如同一座灯塔,照亮了未来污水处理领域的发展道路。随着科技的持续进步,3D可视化大屏展示技术必将迎来更加辉煌的发展。一方面,其与人工智能、大数据、物联网等前沿技术的融合将愈发紧密。借助人工智能算法,大屏系统将具备更强大的自主学习和分析能力,能够根据实时数据和历史经验,自动优化污水处理工艺参
- UI前端大数据可视化实战策略:如何设计交互式数据探索界面?
UI前端开发工作室
ui前端信息可视化
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:从“被动观看”到“主动探索”的可视化革命传统大数据可视化常陷入“图表堆砌”的困境:企业dashboard上布满折线图、饼图,却难以回答“销售额下降的核心区域是哪里”“用户流失与哪个行为强相关”等深度问题。
- 【HTML网页】智能健康监测——全方位健康管理专家(包含网页源代码)
智能健康监测分析系统智能健康监测分析系统是一种基于物联网、大数据、人工智能等技术的综合性健康管理解决方案。它具有以下六大核心功能:实时监测系统通过智能传感器和可穿戴设备,实时采集用户的生理数据,例如心率、血压、血氧饱和度、血糖水平和睡眠质量等,确保用户随时掌握自己的身体状况。健康数据分析利用人工智能和大数据分析技术,系统对采集到的数据进行处理和分析,提取有价值的健康信息,如心率变异性、呼吸频率等,
- Elasticsearch 高可用实战:架构设计与场景化解决方案
辣呼呼的哈哈
Elasticsearch入门到精通elasticsearchwpf大数据全文检索搜索引擎restfuljava
Elasticsearch高可用实战:架构设计与场景化解决方案本文深入探讨Elasticsearch在高并发、大数据量场景下的高可用架构设计,结合电商搜索、日志分析等真实案例,提供可落地的技术方案与Java实现。一、高可用架构设计原则1.分布式架构核心要素客户端负载均衡层协调节点数据节点-分片1数据节点-分片2数据节点-分片3副本分片副本分片副本分片2.高可用黄金法则冗余设计:至少3节点集群+1副
- oracle 数据库迁移expdp,impdp(数据泵导出导入)方法
小张是铁粉
oracle数据库
一.优缺点优点:1.高效性能:expdp,impdp使用并行技术,可以显著提高导出导入速度,尤其适用于大数据量的迁移。支持压缩和加密,减少导出文件的大小并提高安全性。2.灵活的对象选择:可以导出整个数据库、特定表空间、用户(Schema)或单个表。支持过滤条件,例如只导出特定表的数据或元数据。3.跨平台兼容性:支持跨平台迁移(例如从Linux到Windows),但需要注意字节序(endiannes
- 用Python的Chartify库,商业数据可视化效率提升13倍!
忆愿
Python编程的脉动之声pythonopencv人工智能计算机视觉深度学习神经网络机器学习
文章目录为啥要用Chartify?安装那些事儿从零开始画图基础柱状图进阶折线图散点图与气泡图专业数据分析必备技能多维度分析时间序列分析高级可视化技巧自定义主题交互式特性批量图表生成性能优化技巧大数据集处理内存优化实战案例:销售数据分析系统数据可视化这事儿,搞过的都知道有多费劲。用matplotlib画个图要调半天参数,才能让图表看起来稍微顺眼一点;seaborn虽然画出来的图确实好看,但是配置项太
- 【大数据】FP-growth算法
大雨淅淅
大数据算法人工智能大数据
目录一、FP-growth算法概述二、FP-growth算法代码实现2.1FP-growth算法matlab实现2.2FP-growth算法python实现三、FP-growth算法应用四、FP-growth算法发展趋势一、FP-growth算法概述FP-growth算法是一种用于发现数据集中频繁项集的高效算法。它由JiaweiHan等人提出,旨在解决Apriori算法在大数据集上效率低下的问题。
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s