iOS GCD底层原理分析

libdispatch.dylib源码地址https://opensource.apple.com/release/macos-1015.html

队列创建

  • 在源码中搜索dispatch_queue_create
dispatch_queue_t
dispatch_queue_create(const char *label, dispatch_queue_attr_t attr)
{
    return _dispatch_lane_create_with_target(label, attr, DISPATCH_TARGET_QUEUE_DEFAULT, true);
}
  • 搜索_dispatch_lane_create_with_target(并进入
DISPATCH_NOINLINE
static dispatch_queue_t
_dispatch_lane_create_with_target(const char *label, dispatch_queue_attr_t dqa,
        dispatch_queue_t tq, bool legacy)
{
    if (!slowpath(dqa)) { // 如果是串行队列
        dqa = _dispatch_get_default_queue_attr(); // 串行队列的attr 取默认attr
    } else if (dqa->do_vtable != DISPATCH_VTABLE(queue_attr)) { // 并行队列的 attr->do_vtable 应该等于 DISPATCH_VTABLE(queue_attr)
        DISPATCH_CLIENT_CRASH(dqa->do_vtable, "Invalid queue attribute");
    }

    // dqai 创建 -
    dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);
    
    //第一步:规范化参数,例如qos, overcommit, tq
    // dispatch_qos_t qos是优先级?
    dispatch_qos_t qos = _dispatch_priority_qos(dqa->dqa_qos_and_relpri);
    // 是否overcommit(即queue创建的线程数是否允许超过实际的CPU个数)
    _dispatch_queue_attr_overcommit_t overcommit = dqa->dqa_overcommit;
    if (overcommit != _dispatch_queue_attr_overcommit_unspecified && tq) { //
        if (tq->do_targetq) { // overcommit 的queue 必须是全局的
            DISPATCH_CLIENT_CRASH(tq, "Cannot specify both overcommit and "
                    "a non-global target queue");
        }
    }

    // 下面这些代码,因为用户创建的queue的tq一定为NULL,因此,只要关注tq == NULL的分支即可,我们删除了其余分支
    if (!tq) { // 自己创建的queue,tq都是null
        tq = _dispatch_get_root_queue( // 在root queue里面去取一个合适的queue当做target queue
                qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos, // 无论是用户创建的串行还是并行队列,其qos都没有指定,因此,qos这里都取DISPATCH_QOS_DEFAULT
                overcommit == _dispatch_queue_attr_overcommit_enabled);
        if (slowpath(!tq)) { // 如果根据create queue是传入的属性无法获取到对应的tq,crash
            DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
        }
    }

    ...
    
    //拼接队列名称
    // 根据不同的queue类型,设置vtable。vtable实现了SERIAL queue 和 CONCURRENT queue的行为差异。
    const void *vtable;
    dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
    if (dqai.dqai_concurrent) { // 并发
        // OS_dispatch_queue_concurrent
        vtable = DISPATCH_VTABLE(queue_concurrent);
    } else {// 串行
        vtable = DISPATCH_VTABLE(queue_serial);
    }
    
    ....
    
    //创建队列,并初始化
    dispatch_lane_t dq = _dispatch_object_alloc(vtable,
            sizeof(struct dispatch_lane_s)); // alloc
    //根据dqai.dqai_concurrent的值,就能判断队列 是 串行 还是并发,对于并发队列,其queue width是DISPATCH_QUEUE_WIDTH_MAX,而串行队列其width是1
    _dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
            DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
            (dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0)); // init
    //设置队列label标识符
    dq->dq_label = label;//设置dq的名字
    dq->dq_priority = _dispatch_priority_make((dispatch_qos_t)dqai.dqai_qos, dqai.dqai_relpri);//优先级处理
    
    ...
    
    //类似于类与元类的绑定,不是直接的继承关系,而是类似于模型与模板的关系
    dq->do_targetq = tq;
    _dispatch_object_debug(dq, "%s", __func__);
    return _dispatch_trace_queue_create(dq)._dq;//研究dq
}

_dispatch_lane_create_with_target源码分析

-【第一步】_dispatch_queue_attr_to_info方法传入daq(队列类型)创建_dispatch_queue_attr_to_info_t类型的对象dqai,用于存储队列的相关属性信息

_dispatch_queue_attr_to_info

-【第二步】设置队列的相关属性,例如服务质量qos是否overcommit(队列创建的线程数是否允许超过实际的CPU个数)、tq(自己创建的队列tq一定为NULL)

-【第三步】DISPATCH_VTABLE宏定义拼接队列名字,OS_dispatch_+队列类型=队列名字
- 串行队列:OS_dispatch_queue_serial
- 并发队列:OS_dispatch_queue_concurrent

#define DISPATCH_VTABLE(name) DISPATCH_OBJC_CLASS(name)

#define DISPATCH_OBJC_CLASS(name)   (&DISPATCH_CLASS_SYMBOL(name))

#define DISPATCH_CLASS(name) OS_dispatch_##name

-【第四步】初始化队列dq(alloc init),dqai.dqai_concurrent 可以判断队列类型,DISPATCH_QUEUE_WIDTH_MAX==并发,1==串行
- 进入_dispatch_object_alloc -> _os_object_alloc_realized方法中,发现里面设置了isa指向,说明了队列是对象

_os_object_alloc_realized

- 进入_dispatch_queue_init方法,初始化队列相关属性
_dispatch_queue_init

-【第五步】通过_dispatch_trace_queue_create处理创建好的dq队列

_dispatch_trace_queue_create

- 进入_dispatch_introspection_queue_create_hook -> dispatch_introspection_queue_get_info -> _dispatch_introspection_lane_get_info方法,实现了一个模板队列
_dispatch_introspection_lane_get_info

总结

  • dispatch_queue_create中队列类型决定了下层dq_width的值(max=并发,1=串行
  • 队列queue对象,通过alloc+init创建,在alloc中有个class(宏定义)指定isa的指向
  • 队列在底层是通过模板创建的,类型是结构体dispatch_introspection_queue_s
    队列创建分析

异步函数

进入dispatch_async的源码实现

  • _dispatch_continuation_init:任务包装函数
  • _dispatch_continuation_async:并发处理函数
dispatch_async(dispatch_queue_t dq, dispatch_block_t work)//work 任务
{
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME;
    dispatch_qos_t qos;

    // 任务包装器(work在这里才有使用) - 接受work - 保存work - 并函数式编程
    // 保存 block 
    qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
    //并发处理
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}

_dispatch_continuation_init任务包装

DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu, dispatch_block_t work,
        dispatch_block_flags_t flags, uintptr_t dc_flags)
{
    void *ctxt = _dispatch_Block_copy(work);//拷贝任务

    dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        dc->dc_flags = dc_flags;
        dc->dc_ctxt = ctxt;//赋值
        // will initialize all fields but requires dc_flags & dc_ctxt to be set
        return _dispatch_continuation_init_slow(dc, dqu, flags);
    }

    dispatch_function_t func = _dispatch_Block_invoke(work);//封装work - 异步回调
    if (dc_flags & DC_FLAG_CONSUME) {
        func = _dispatch_call_block_and_release;//回调函数赋值 - 同步回调
    }
    return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}
  • 通过_dispatch_Block_copy拷贝任务
  • 通过_dispatch_Block_invoke封装任务,是一个异步回调函数
  • 如果是同步,则回调函数赋值为_dispatch_call_block_and_release
  • 通过_dispatch_continuation_init_f方法赋值,将func任务保存在属性中
    _dispatch_continuation_init_f

_dispatch_continuation_async并发处理

主要是执行block回调 ,进入_dispatch_continuation_async源码

DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
        dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
    if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
        _dispatch_trace_item_push(dqu, dc);//跟踪日志
    }
#else
    (void)dc_flags;
#endif
    return dx_push(dqu._dq, dc, qos);//与dx_invoke一样,都是宏
}
  • 关键代码dx_push是个宏
#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)
  • dx_push根据队列类型执行不同的函数

    dq_push

  • 进入_dispatch_root_queue_push -> _dispatch_root_queue_push_inline ->_dispatch_root_queue_poke -> _dispatch_root_queue_poke_slow源码,

    • 通过_dispatch_root_queues_init注册回调
    • 使用pthread_create方法通过do-while循环创建线程
DISPATCH_NOINLINE
static void
_dispatch_root_queue_poke_slow(dispatch_queue_global_t dq, int n, int floor)
{
    int remaining = n;
    int r = ENOSYS;

    _dispatch_root_queues_init();//重点
    
    ...
    //do-while循环创建线程
    do {
        _dispatch_retain(dq); // released in _dispatch_worker_thread
        while ((r = pthread_create(pthr, attr, _dispatch_worker_thread, dq))) {
            if (r != EAGAIN) {
                (void)dispatch_assume_zero(r);
            }
            _dispatch_temporary_resource_shortage();
        }
    } while (--remaining);
    
    ...
}

_dispatch_root_queues_init

通过dispatch_once_f单例实现

DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_root_queues_init(void)
{
    dispatch_once_f(&_dispatch_root_queues_pred, NULL, _dispatch_root_queues_init_once);
}
  • 进入_dispatch_root_queues_init_once源码,发现内部不同事物的调用句柄都是_dispatch_worker_thread2

    _dispatch_root_queues_init_once

  • block的回调执行路径是_dispatch_root_queues_init_once ->_dispatch_worker_thread2 -> _dispatch_root_queue_drain -> _dispatch_root_queue_drain -> _dispatch_continuation_pop_inline -> _dispatch_continuation_invoke_inline -> _dispatch_client_callout -> dispatch_call_block_and_release,可以通过bt打印堆栈信息,

    bt打印堆栈

总结

  • 将异步任务拷贝并封装后,设置回调函数func
  • 通过dx_push递归,重定向到跟队列,通过pthread_creat方法do-while循环创建线程,通过dx_invoke执行回调,dx_pushdx_invoke是一一对应的
    异步函数

同步函数

进入dispatch_sync源码,发现底层是通过栅栏函数实现的

DISPATCH_NOINLINE
void
dispatch_sync(dispatch_queue_t dq, dispatch_block_t work)
{
    uintptr_t dc_flags = DC_FLAG_BLOCK;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
    }
    _dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}
  • 进入_dispatch_sync_f源码

    _dispatch_sync_f

  • 进入_dispatch_sync_f_inline源码,dq->dq_width == 1表示串行队列

    • 栅栏函数_dispatch_barrier_sync_f
    • 死锁_dispatch_sync_f_slow,如果存在相互等待的情况下会死锁
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
    if (likely(dq->dq_width == 1)) {//表示是串行队列
        return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);//栅栏
    }

    if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
        DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
    }

    dispatch_lane_t dl = upcast(dq)._dl;
    // Global concurrent queues and queues bound to non-dispatch threads
    // always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
    if (unlikely(!_dispatch_queue_try_reserve_sync_width(dl))) {
        return _dispatch_sync_f_slow(dl, ctxt, func, 0, dl, dc_flags);//死锁
    }

    if (unlikely(dq->do_targetq->do_targetq)) {
        return _dispatch_sync_recurse(dl, ctxt, func, dc_flags);
    }
    _dispatch_introspection_sync_begin(dl);//处理当前信息
    _dispatch_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(
            _dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags)));//block执行并释放
}

_dispatch_sync_f_slow死锁

  • 进入_dispatch_sync_f_slow,当前主队列挂起、阻塞

    _dispatch_sync_f_slow

  • 向队列中添加任务,push加入主队列,_dispatch_trace_item_push

    _dispatch_trace_item_push

  • 进入__DISPATCH_WAIT_FOR_QUEUE__,判断dqu.dq是否为正在等待的主队列,然后将dq的状态和当前任务依赖的队列进行匹配

    __DISPATCH_WAIT_FOR_QUEUE__

  • 进入_dq_state_drain_locked_by -> _dispatch_lock_is_locked_by源码,如果当前等待的队列和正在执行任务的是同一个队列,即线程ID是否相同,如果相同会造成死锁

DISPATCH_ALWAYS_INLINE
static inline bool
_dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid)
{
    // equivalent to _dispatch_lock_owner(lock_value) == tid
    //异或操作:相同为0,不同为1,如果相同,则为0,0 &任何数都为0
    //即判断 当前要等待的任务 和 正在执行的任务是否一样,通俗的解释就是 执行和等待的是否在同一队列
    return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}

总结

  • 同步函数底层实现是同步栅栏函数
  • 如果正在执行任务的队列和等待的是同一个队列,会造成相互等待的局面,形成死锁
同步函数流程图

单例

进入dispatch_once源码实现,发现底层是通过dispatch_once_f实现的

// val -- 静态变量,由于不同位置定义的静态变量是不同的,所以静态变量具有唯一性
//block -- block回调
void
dispatch_once(dispatch_once_t *val, dispatch_block_t block)
{
    dispatch_once_f(val, block, _dispatch_Block_invoke(block));
}
  • 进入dispatch_once_f源码,其中的val是外界传入的onceToken静态变量,func_dispatch_Block_invoke(block)
DISPATCH_NOINLINE
void
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
    //静态变量
    dispatch_once_gate_t l = (dispatch_once_gate_t)val;
//os_atomic_load获取当前任务的标识符
#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    uintptr_t v = os_atomic_load(&l->dgo_once, acquire);//原子属性关联
    if (likely(v == DLOCK_ONCE_DONE)) {//已经执行过了,直接返回
        return;
    }
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    if (likely(DISPATCH_ONCE_IS_GEN(v))) {
    //任务执行后,加锁失败,重新存储,将标识符== DLOCK_ONCE_DONE
        return _dispatch_once_mark_done_if_quiesced(l, v);
    }
#endif
#endif
    if (_dispatch_once_gate_tryenter(l)) {
      //尝试进入任务,解锁,执行block回调
        return _dispatch_once_callout(l, ctxt, func);
    }
//如果此时有任务1正在执行,再次进来一个任务2,则`任务2`进入无限次等待
    return _dispatch_once_wait(l);
}

_dispatch_once_gate_tryenter解锁

底层通过os_atomic_cmpxchg方法进行标识符对比,如果对比没问题进行解锁,即任务的标识符置为DLOCK_ONCE_UNLOCKED

DISPATCH_ALWAYS_INLINE
static inline bool
_dispatch_once_gate_tryenter(dispatch_once_gate_t l)
{
    return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
            (uintptr_t)_dispatch_lock_value_for_self(), relaxed);//首先对比,然后进行改变
}

_dispatch_once_callout 回调

进入_dispatch_once_callout源码

  • 【第一步】_dispatch_client_callout:block回调
  • 【第二步】_dispatch_once_gate_broadcast:广播
DISPATCH_NOINLINE
static void
_dispatch_once_callout(dispatch_once_gate_t l, void *ctxt,
        dispatch_function_t func)
{
    _dispatch_client_callout(ctxt, func);//block调用执行
    _dispatch_once_gate_broadcast(l);//进行广播:告诉别人有了归属,不要找我了
}
  • 进入_dispatch_client_callout源码,其中f==_dispatch_Block_invoke(block),即异步回调
#undef _dispatch_client_callout
void
_dispatch_client_callout(void *ctxt, dispatch_function_t f)
{
    @try {
        return f(ctxt);
    }
    @catch (...) {
        objc_terminate();
    }
}
  • 进入_dispatch_once_gate_broadcast -> _dispatch_once_mark_done,将任务的标识为DLOCK_ONCE_DONE,即加锁
DISPATCH_ALWAYS_INLINE
static inline uintptr_t
_dispatch_once_mark_done(dispatch_once_gate_t dgo)
{
    //如果不相同,直接改为相同,然后上锁 -- DLOCK_ONCE_DONE
    return os_atomic_xchg(&dgo->dgo_once, DLOCK_ONCE_DONE, release);
}

总结

  • 【只执行一次的原理】:GCD单例中有两个参数onceToken 、block,其中onceToken是静态变量,具有唯一性,在底层封装成dispatch_once_gate_t类型的变量l变量l主要是用来获取底层原子属性关联,即变量v,通过变量v来查询任务状态,如果变量v == DLOCK_ONCE_DONE,说明任务已经处理了,直接return

  • 【block调用时机】:如果任务没有被执行,底层会通过C++函数的比较,任务状态置为DLOCK_ONCE_UNLOCK,确保当前任务执行的唯一性,之后进行block回调,将任务置状态为DLOCK_ONCE_DONE,确保下次进来不会执行

  • 【多线程影响】:如果在当前任务执行期间,有其他任务进来,会进入无限次等待,原因是当前任务已经获取了锁,进行了加锁,其他任务是无法获取锁的

单例原理流程图

栅栏函数

  • 控制任务执行顺序,可以让其同步执行
  • 只能控制同一并发队列,只会阻塞一次
  • 同步栅栏添加进队列时,当前线程会被加锁,直到同步栅栏之前的任务和同步栅栏本身的任务都执行完毕,当前线程才会解锁
  • 只有使用自定义队列才有意义,如果使用串行队列或者全局并发队列,这个栅栏函数的作用==同步函数,没有任何意义,还会耗费更多性能
  • dispatch_barrier_sync 同步栅栏函数阻塞线程,影响主线程任务执行
  • dispatch_barrier_async 异步栅栏函数阻塞的是队列且必须是自定义的并发队列,不影响主线程任务的执行
同步栅栏函数
异步栅栏函数

异步栅栏函数 底层分析

进入dispatch_barrier_async源码,发现底层和dispatch_async类似

#ifdef __BLOCKS__
void
dispatch_barrier_async(dispatch_queue_t dq, dispatch_block_t work)
{
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME | DC_FLAG_BARRIER;
    dispatch_qos_t qos;

    qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
    _dispatch_continuation_async(dq, dc, qos, dc_flags);
}
#endif

同步栅栏函数 底层分析

进入dispatch_barrier_sync源码

void
dispatch_barrier_sync(dispatch_queue_t dq, dispatch_block_t work)
{
    uintptr_t dc_flags = DC_FLAG_BARRIER | DC_FLAG_BLOCK;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
    }
    _dispatch_barrier_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}
_dispatch_barrier_sync_f_inline

进入_dispatch_barrier_sync_f --> _dispatch_barrier_sync_f_inline源码

DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_barrier_sync_f_inline(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
    dispatch_tid tid = _dispatch_tid_self();//获取线程的id,即线程的唯一标识
    
    ...
    
    //判断线程状态,需不需要等待,是否回收
    if (unlikely(!_dispatch_queue_try_acquire_barrier_sync(dl, tid))) {//栅栏函数也会死锁
        return _dispatch_sync_f_slow(dl, ctxt, func, DC_FLAG_BARRIER, dl,//没有回收
                DC_FLAG_BARRIER | dc_flags);
    }
    //验证target是否存在,如果存在,加入栅栏函数的递归查找 是否等待
    if (unlikely(dl->do_targetq->do_targetq)) {
        return _dispatch_sync_recurse(dl, ctxt, func,
                DC_FLAG_BARRIER | dc_flags);
    }
    _dispatch_introspection_sync_begin(dl);
    _dispatch_lane_barrier_sync_invoke_and_complete(dl, ctxt, func
            DISPATCH_TRACE_ARG(_dispatch_trace_item_sync_push_pop(
                    dq, ctxt, func, dc_flags | DC_FLAG_BARRIER)));//执行
}

主要分为以下几步

  • 通过_dispatch_tid_self 获取线程ID

  • 通过_dispatch_queue_try_acquire_barrier_sync判断线程状态

    _dispatch_queue_try_acquire_barrier_sync

    • 进入_dispatch_queue_try_acquire_barrier_sync_and_suspend源码,在这里释放
      _dispatch_queue_try_acquire_barrier_sync_and_suspend
  • 通过_dispatch_sync_recurse递归查找栅栏函数的target

  • 通过_dispatch_introspection_sync_begin向前信息进行处理

  • 通过_dispatch_lane_barrier_sync_invoke_and_complete执行block并释放

    _dispatch_lane_barrier_sync_invoke_and_complete

信号量

  • 使任务同步执行,类似互斥锁
  • 控制GCD最大并发数
dispatch_semaphore_create 创建

初始化信号量,设置GCD最大并发数且最大并发数必须大于0

dispatch_semaphore_t
dispatch_semaphore_create(long value)
{
    dispatch_semaphore_t dsema;

    // If the internal value is negative, then the absolute of the value is
    // equal to the number of waiting threads. Therefore it is bogus to
    // initialize the semaphore with a negative value.
    if (value < 0) {
        return DISPATCH_BAD_INPUT;
    }

    dsema = _dispatch_object_alloc(DISPATCH_VTABLE(semaphore),
            sizeof(struct dispatch_semaphore_s));
    dsema->do_next = DISPATCH_OBJECT_LISTLESS;
    dsema->do_targetq = _dispatch_get_default_queue(false);
    dsema->dsema_value = value;
    _dispatch_sema4_init(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
    dsema->dsema_orig = value;
    return dsema;
}
dispatch_semaphore_wait 加锁

主要作用是对信号量dsema 通过os_atomic_dec2o进行--操作,内部执行C++函数atomic_fetch_sub_explicit

  • value >= 0,执行成功
  • value == LONG_MIN,系统抛出crash
  • value < 0,进入长等待
long
dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
    // dsema_value 进行 -- 操作
    long value = os_atomic_dec2o(dsema, dsema_value, acquire);
    if (likely(value >= 0)) {//表示执行操作无效,即执行成功
        return 0;
    }
    return _dispatch_semaphore_wait_slow(dsema, timeout);//长等待
}
  • 进入_dispatch_semaphore_wait_slow源码,当value<0时,更加等待事件timeout做出不同操作
    _dispatch_semaphore_wait_slow
dispatch_semaphore_signal解锁

通过os_atomic_inc2o函数对value进行了++操作,os_atomic_inc2o内部是通过C++的atomic_fetch_add_explicit

  • value > 0,执行成功
  • value == 0,进入长等待
long
dispatch_semaphore_signal(dispatch_semaphore_t dsema)
{
    //signal 对 value是 ++
    long value = os_atomic_inc2o(dsema, dsema_value, release);
    if (likely(value > 0)) {//返回0,表示当前的执行操作无效,相当于执行成功
        return 0;
    }
    if (unlikely(value == LONG_MIN)) {
        DISPATCH_CLIENT_CRASH(value,
                "Unbalanced call to dispatch_semaphore_signal()");
    }
    return _dispatch_semaphore_signal_slow(dsema);//进入长等待
}

总结

  • dispatch_semaphore_create 初始化信号量,设置最大并发数
  • dispatch_semaphore_wait 对信号量value--,加锁
  • dispatch_semaphore_signal 对信号量value++,解锁
    信号量流程图

调度组

  • 控制任务执行顺序
dispatch_group_create 创建组 
dispatch_group_async 进组任务 
dispatch_group_notify 进组任务执行完毕通知 dispatch_group_wait 进组任务执行等待时间

//进组和出组一般是成对使用的
dispatch_group_enter 进组 
dispatch_group_leave 出组
dispatch_group_create 创建组
  • 进入dispatch_group_create源码
dispatch_group_t
dispatch_group_create(void)
{
    return _dispatch_group_create_with_count(0);
}
  • 进入_dispatch_group_create_with_count源码,对group对象属性赋值,并返回group
DISPATCH_ALWAYS_INLINE
static inline dispatch_group_t
_dispatch_group_create_with_count(uint32_t n)
{
    //创建group对象,类型为OS_dispatch_group
    dispatch_group_t dg = _dispatch_object_alloc(DISPATCH_VTABLE(group),
            sizeof(struct dispatch_group_s));
    //group对象赋值
    dg->do_next = DISPATCH_OBJECT_LISTLESS;
    dg->do_targetq = _dispatch_get_default_queue(false);
    if (n) {
        os_atomic_store2o(dg, dg_bits,
                (uint32_t)-n * DISPATCH_GROUP_VALUE_INTERVAL, relaxed);
        os_atomic_store2o(dg, do_ref_cnt, 1, relaxed); // 
    }
    return dg;
}
dispatch_group_enter 进组

进入dispatch_group_enter源码,通过os_atomic_sub_orig2odg->dg.bits--操作,对数值进行处理

void
dispatch_group_enter(dispatch_group_t dg)
{
    // The value is decremented on a 32bits wide atomic so that the carry
    // for the 0 -> -1 transition is not propagated to the upper 32bits.
    uint32_t old_bits = os_atomic_sub_orig2o(dg, dg_bits,//原子递减 0 -> -1
            DISPATCH_GROUP_VALUE_INTERVAL, acquire);
    uint32_t old_value = old_bits & DISPATCH_GROUP_VALUE_MASK;
    if (unlikely(old_value == 0)) {//如果old_value
        _dispatch_retain(dg); // 
    }
    if (unlikely(old_value == DISPATCH_GROUP_VALUE_MAX)) {//到达临界值,会报crash
        DISPATCH_CLIENT_CRASH(old_bits,
                "Too many nested calls to dispatch_group_enter()");
    }
}
dispatch_group_leave 出组

进入dispatch_group_leave源码,通过os_atomic_add_orig2o对dg-> dg_state 作 `++操作

  • -1到0,++
  • 根据状态,do_while循环,唤醒block执行任务
  • 如果0 + 1 = 1,enter-leave不平衡,即leave多次调用,会crash
void
dispatch_group_leave(dispatch_group_t dg)
{
    // The value is incremented on a 64bits wide atomic so that the carry for
    // the -1 -> 0 transition increments the generation atomically.
    uint64_t new_state, old_state = os_atomic_add_orig2o(dg, dg_state,//原子递增 ++
            DISPATCH_GROUP_VALUE_INTERVAL, release);
    uint32_t old_value = (uint32_t)(old_state & DISPATCH_GROUP_VALUE_MASK);
    //根据状态,唤醒
    if (unlikely(old_value == DISPATCH_GROUP_VALUE_1)) {
        old_state += DISPATCH_GROUP_VALUE_INTERVAL;
        do {
            new_state = old_state;
            if ((old_state & DISPATCH_GROUP_VALUE_MASK) == 0) {
                new_state &= ~DISPATCH_GROUP_HAS_WAITERS;
                new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
            } else {
                // If the group was entered again since the atomic_add above,
                // we can't clear the waiters bit anymore as we don't know for
                // which generation the waiters are for
                new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
            }
            if (old_state == new_state) break;
        } while (unlikely(!os_atomic_cmpxchgv2o(dg, dg_state,
                old_state, new_state, &old_state, relaxed)));
        return _dispatch_group_wake(dg, old_state, true);//唤醒
    }
    //-1 -> 0, 0+1 -> 1,即多次leave,会报crash,简单来说就是enter-leave不平衡
    if (unlikely(old_value == 0)) {
        DISPATCH_CLIENT_CRASH((uintptr_t)old_value,
                "Unbalanced call to dispatch_group_leave()");
    }
}
  • 进入_dispatch_group_wake源码,do_while循环进行一步命中,调用_dispatch_continuation_async
DISPATCH_NOINLINE
static void
_dispatch_group_wake(dispatch_group_t dg, uint64_t dg_state, bool needs_release)
{
    uint16_t refs = needs_release ? 1 : 0; // 

    if (dg_state & DISPATCH_GROUP_HAS_NOTIFS) {
        dispatch_continuation_t dc, next_dc, tail;

        // Snapshot before anything is notified/woken 
        dc = os_mpsc_capture_snapshot(os_mpsc(dg, dg_notify), &tail);
        do {
            dispatch_queue_t dsn_queue = (dispatch_queue_t)dc->dc_data;
            next_dc = os_mpsc_pop_snapshot_head(dc, tail, do_next);
            _dispatch_continuation_async(dsn_queue, dc,
                    _dispatch_qos_from_pp(dc->dc_priority), dc->dc_flags);//block任务执行
            _dispatch_release(dsn_queue);
        } while ((dc = next_dc));//do-while循环,进行异步任务的命中

        refs++;
    }

    if (dg_state & DISPATCH_GROUP_HAS_WAITERS) {
        _dispatch_wake_by_address(&dg->dg_gen);//地址释放
    }

    if (refs) _dispatch_release_n(dg, refs);//引用释放
}
  • 进入_dispatch_continuation_async源码,与异步函数的block回调一致
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
        dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
    if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
        _dispatch_trace_item_push(dqu, dc);//跟踪日志
    }
#else
    (void)dc_flags;
#endif
    return dx_push(dqu._dq, dc, qos);//与dx_invoke一样,都是宏
}
dispatch_group_notify 通知

进入dispatch_group_notify源码,如果old_state==0,就可以进行释放了,

DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_continuation_t dsn)
{
    uint64_t old_state, new_state;
    dispatch_continuation_t prev;

    dsn->dc_data = dq;
    _dispatch_retain(dq);
    //获取dg底层的状态标识码,通过os_atomic_store2o获取的值,即从dg的状态码 转成了 os底层的state
    prev = os_mpsc_push_update_tail(os_mpsc(dg, dg_notify), dsn, do_next);
    if (os_mpsc_push_was_empty(prev)) _dispatch_retain(dg);
    os_mpsc_push_update_prev(os_mpsc(dg, dg_notify), prev, dsn, do_next);
    if (os_mpsc_push_was_empty(prev)) {
        os_atomic_rmw_loop2o(dg, dg_state, old_state, new_state, release, {
            new_state = old_state | DISPATCH_GROUP_HAS_NOTIFS;
            if ((uint32_t)old_state == 0) { //如果等于0,则可以进行释放了
                os_atomic_rmw_loop_give_up({
                    return _dispatch_group_wake(dg, new_state, false);//唤醒
                });
            }
        });
    }
}
dispatch_group_async

进入dispatch_group_async源码,包装任务和异步处理任务,底层实际就是enter-leave

#ifdef __BLOCKS__
void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_block_t db)
{
    
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME | DC_FLAG_GROUP_ASYNC;
    dispatch_qos_t qos;
    //任务包装器
    qos = _dispatch_continuation_init(dc, dq, db, 0, dc_flags);
    //处理任务
    _dispatch_continuation_group_async(dg, dq, dc, qos);
}
#endif
  • 进入_dispatch_continuation_group_async源码,封装了dispatch_group_enter进组操作
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_group_async(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_continuation_t dc, dispatch_qos_t qos)
{
    dispatch_group_enter(dg);//进组
    dc->dc_data = dg;
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);//异步操作
}
  • 搜索_dispatch_client_callout的调用,在_dispatch_continuation_with_group_invoke
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_with_group_invoke(dispatch_continuation_t dc)
{
    struct dispatch_object_s *dou = dc->dc_data;
    unsigned long type = dx_type(dou);
    if (type == DISPATCH_GROUP_TYPE) {//如果是调度组类型
        _dispatch_client_callout(dc->dc_ctxt, dc->dc_func);//block回调
        _dispatch_trace_item_complete(dc);
        dispatch_group_leave((dispatch_group_t)dou);//出组
    } else {
        DISPATCH_INTERNAL_CRASH(dx_type(dou), "Unexpected object type");
    }

总结

  • enter-leave必须成对出现
  • dispatch_group_enter底层通过C++函数,对group的value进行--操作(0->-1)
  • dispatch_group_leave底层通过C++函数,对group的value进行++操作(-1 ->0)
  • dispatch_group_notify底层通过判断group的state是否等于0,当==0时来进行通知
  • block中任务的唤醒可以通过dispatch_group_leavedispatch_group_notify
  • dispatch_group_async底层得实现就是enter-leave
    调度组原理图

dispatch_source

  • 基础数据类型,用于协调特定底层系统事件的处理

  • 代替异步回调函数,来处理系统相关的事件,当配置一个dispatch时,需要制定检测的事件,dispatch queue处理事件的代码(block或函数),当事件发生时,dispatch source会提交你的block或函数到queue中执行

  • 相对于dispatch_async的优势是联结和CPU负荷小,简单来说就是由你调用dispatch_source_merge_data函数来向自己发送信号

    • 联结:在任一线程上调度它的一个函数dispatch_source_merge_data,就会执行dispatch source事先定义好的句柄(block),这个过程叫做Custom event ,用户事件
    • 句柄:一种指向指针的指针,指向的就是一个类或者结构,和系统有密切关系
      • 实例句柄 HINSTANCE
      • 位图句柄 HBITMAP
      • 设备表句柄 HDC
      • 图标句柄 HICON

使用

  • type :dispatch处理的事件
  • handle :可以理解为句柄、索引或id,假如要监听进程,需要传入进程的ID
  • mask :可以理解为描述,提供更详细的描述,让它知道具体要监听什么
  • queue :自定义源需要的一个队列,用来处理所有的响应句柄
dispatch_source_t source = dispatch_source_create(dispatch_source_type_t type, uintptr_t handle, unsigned long mask, dispatch_queue_t queue)

Dispatch Source 种类

  • DISPATCH_SOURCE_TYPE_DATA_ADD:自定义的事件,变量增加,当同一时间,一个事件的的触发频率很高,那么Dispatch Source会将这些响应以ADD的方式进行累积,然后等系统空闲时最终处理,如果触发频率比较零散,那么Dispatch Source会将这些事件分别响应。
  • DISPATCH_SOURCE_TYPE_DATA_OR:自定义的事件,和DISPATCH_SOURCE_TYPE_DATA_ADD一样,但是是以OR的方式进行累积
  • DISPATCH_SOURCE_TYPE_MACH_SEND:MACH端口发送
  • DISPATCH_SOURCE_TYPE_MACH_RECV:MACH端口接收
  • DISPATCH_SOURCE_TYPE_MEMORYPRESSURE:内存压力 (注:iOS8后可用)
  • DISPATCH_SOURCE_TYPE_PROC:进程监听,如进程的退出、创建一个或更多的子线程、进程收到UNIX信号
  • DISPATCH_SOURCE_TYPE_READ:IO操作,如对文件的操作、socket操作的读响应
  • DISPATCH_SOURCE_TYPE_SIGNAL:接收到UNIX信号时响应
  • DISPATCH_SOURCE_TYPE_TIMER:定时器
  • DISPATCH_SOURCE_TYPE_VNODE:文件状态监听,文件被删除、移动、重命名
  • DISPATCH_SOURCE_TYPE_WRITE :IO操作,如对文件的操作、socket操作的写响应

常见函数

//挂起队列
dispatch_suspend(queue) 

//分派源创建时默认处于暂停状态,在分派源分派处理程序之前必须先恢复
dispatch_resume(source) 

//向分派源发送事件,需要注意的是,不可以传递0值(事件不会被触发),同样也不可以传递负数。
dispatch_source_merge_data 

//设置响应分派源事件的block,在分派源指定的队列上运行
dispatch_source_set_event_handler 

//得到分派源的数据
dispatch_source_get_data 

//得到dispatch源创建,即调用dispatch_source_create的第二个参数
uintptr_t dispatch_source_get_handle(dispatch_source_t source); 

//得到dispatch源创建,即调用dispatch_source_create的第三个参数
unsigned long dispatch_source_get_mask(dispatch_source_t source); 

////取消dispatch源的事件处理--即不再调用block。如果调用dispatch_suspend只是暂停dispatch源。
void dispatch_source_cancel(dispatch_source_t source); 

//检测是否dispatch源被取消,如果返回非0值则表明dispatch源已经被取消
long dispatch_source_testcancel(dispatch_source_t source); 

//dispatch源取消时调用的block,一般用于关闭文件或socket等,释放相关资源
void dispatch_source_set_cancel_handler(dispatch_source_t source, dispatch_block_t cancel_handler); 

//可用于设置dispatch源启动时调用block,调用完成后即释放这个block。也可在dispatch源运行当中随时调用这个函数。
void dispatch_source_set_registration_handler(dispatch_source_t source, dispatch_block_t registration_handler); 

使用场景

用于验证码倒计时,因为dispatch_source不依赖于Runloop,而是直接和底层内核交互,准确性更高。

- (void)use033{
    //倒计时时间
    __block int timeout = 3;
    
    //创建队列
    dispatch_queue_t globalQueue = dispatch_get_global_queue(0, 0);
    
    //创建timer
    dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, globalQueue);
    
    //设置1s触发一次,0s的误差
    /*
     - source 分派源
     - start 数控制计时器第一次触发的时刻。参数类型是 dispatch_time_t,这是一个opaque类型,我们不能直接操作它。我们得需要 dispatch_time 和 dispatch_walltime 函数来创建它们。另外,常量 DISPATCH_TIME_NOW 和 DISPATCH_TIME_FOREVER 通常很有用。
     - interval 间隔时间
     - leeway 计时器触发的精准程度
     */
    dispatch_source_set_timer(timer,dispatch_walltime(NULL, 0),1.0*NSEC_PER_SEC, 0);
    
     //触发的事件
    dispatch_source_set_event_handler(timer, ^{
        //倒计时结束,关闭
        if (timeout <= 0) {
            //取消dispatch源
            dispatch_source_cancel(timer);
        }else{
            timeout--;
            
            dispatch_async(dispatch_get_main_queue(), ^{
                //更新主界面的操作
                NSLog(@"倒计时 - %d", timeout);
            });
        }
    });
    
    //开始执行dispatch源
    dispatch_resume(timer);
}

你可能感兴趣的:(iOS GCD底层原理分析)