- 探秘 DeepSeek 硬件适配:GPU/TPU/NPU 异构计算原理剖析
FinkGO小码
深度学习程序人生算法语言模型数据分析学习方法经验分享
一、引言在深度学习领域蓬勃发展的浪潮中,硬件作为支撑技术腾飞的基石,其适配与协同能力成为决定深度学习应用效能的关键因素。DeepSeek作为前沿且极具创新性的技术框架,在与GPU、TPU、NPU等异构硬件的融合适配方面展现出卓越特性。依托清华大学《DeepSeek:从入门到精通》这一宝贵知识载体,我们得以深入挖掘其底层适配逻辑,全方位展现DeepSeek在异构计算舞台上的精彩表现。二、GPU:深度
- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- Java编程入门:从OOP到第一个程序
helo world
手把手Java基础java开发语言
Java编程入门:从OOP到第一个程序基本的控制逻辑语句建议面向AI学习,实在太简单.3.1面向对象编程三大特性1.封装(Encapsulation)publicclassBankAccount{//私有属性(数据隐藏)privatedoublebalance;//公有方法(操作接口)publicvoiddeposit(doubleamount){if(amount>0){balance+=amo
- JUC并发编程之集合类线程安全问题
xzystart
JUC并发编程java集合线程安全多线程并发编程
在并发条件下,由于多数集合没有同步控制所以这些集合具有线程不安全性线程不安全的集合线程不安全用例(ArrayList为例)示例publicclassMainTest{publicstaticvoidmain(String[]args){ArrayListarrayList=newArrayList{arrayList.add(UUID.randomUUID().toString());System
- 第七个问题 - 什么是AIGC?它和LLM是什么关系?
释迦呼呼
AI一千问AIGC人工智能机器学习深度学习自然语言处理语言模型
AIGC(人工智能生成内容)和LLM(大语言模型)是当前人工智能领域的两个核心概念,它们既有紧密联系,又有明确区别。以下是详细解析:一、什么是AIGC?AIGC(AI-GeneratedContent,人工智能生成内容)指由人工智能系统自动生成的各类数字化内容,涵盖文本、图像、音频、视频、代码、3D模型等多种形式。其核心是让AI模型学习数据分布后,按需生成符合人类需求的内容。AIGC的关键特点:多
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- 阅读笔记:ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Task
Araloak
论文阅读笔记深度学习自然语言处理
阅读笔记:ViLBERT:PretrainingTask-AgnosticVisiolinguisticRepresentationsforVision-and-LanguageTasksContribution提出ViLBERT模型(twostreamsmodel),由两个BERT结构分别对text和image进行学习,通过cross-attention进行信息交流,在两个预训练任务(proxy
- 计算:第四部分 计算的极限 第 12 章 机器能思考吗 AlphaGo 与李世石
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
计算:第四部分计算的极限第12章机器能思考吗AlphaGo与李世石作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自从计算机问世以来,人们就不断探讨机器能否具备人类的思维能力。这个问题一直是人工智能领域的重要议题,也是哲学和认知科学领域长期争论的焦点。直到2016年,AlphaGo与李世石的围棋对决,才将这个问题推向了高潮
- Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,<pybind11/functional.h>
沉迷单车的追风少年
深度学习-计算机视觉深度学习pythonpytorch
项目场景:基于深度学习的三维点云可视化问题描述:Traceback(mostrecentcalllast):File".\draw_npy.py",line25,ino3d.visualization.draw_geometries([pcd.points])TypeError:draw_geometries():incompatiblefunctionarguments.Thefollowing
- 即插即用的注意力机制21种
@Mr_LiuYang
论文阅读AttentionModule注意力机制即插即用
提示:谬误之处请指出更正摘要随着深度学习特别是自然语言处理领域的飞速发展,注意力机制(AttentionMechanism)已成为提升模型表现的关键技术,本文主要记录了即插即用的注意力机制结构的功能、出处及核心代码。1、SEBlock(Squeeze-and-Excitation)功能:自适应学习通道权重,增强重要通道特征。出处:SENet#SEBlock(PyTorch)classSEBlock
- 网关类设备技术演进思路
看兵马俑的程序员
网闸安全
1.新技术采纳5G和物联网技术:支持更快的数据传输和更多连接。人工智能(AI)和机器学习:用于数据分析、用户行为预测和自动化决策。边缘计算:在设备端进行数据处理,减少对云服务的依赖,提高响应速度。区块链技术:用于确保数据安全和网络安全。2.安全性和隐私数据加密和隐私保护:采用最新的加密技术保护数据传输和存储。身份验证和访问控制:强化用户身份验证,确保只有授权用户可以访问网关。固件和软件安全更新:支
- 高压输电线故障检测数据集 YOLO 格式
幽络源小助理
幽络源资料分享人工智能机器学习深度学习
数据集介绍高压输电线故障检测数据集是一个专为电力行业AI模型训练设计的高质量数据集,支持YOLO格式的方框标注,适用于目标检测任务。数据集特点图像数量:1912张高质量图像,涵盖多种场景和光照条件。标注类别:6个类别,包括正常高压线、故障高压线、正常绝缘子、故障绝缘子等。格式支持:支持YOLOv5、YOLOv8等多种YOLO格式,方便直接用于模型训练。数据划分:训练集(1794张)、验证集(77张
- #渗透测试#批量漏洞挖掘#锐捷校园网自助服务系统 任意文件读取(CVE-2023-17233 )
独行soc
漏洞挖掘网络安全漏洞挖掘web安全面试护网
免责声明本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。目录一、漏洞核心原理与技术背景1.漏洞定义与触发条件2.常见攻击向量二、漏洞复现与渗透实战1.环境搭建与工具链2.漏洞验证步骤3.高级绕过技巧三、修复方案与安全加固1.代码层修复2.系统层加固
- 无人系统:未来技术的自动化与智能化应用
给生活加糖!
热门知识自动化运维
随着技术的不断发展,无人系统(UnmannedSystems)作为一类智能化、高效能的自动化设备,已经在多个领域得到了广泛应用。无人系统是指能够自主或通过远程控制执行任务的设备,它们能够代替人类完成高风险或重复性工作,极大地提高生产效率和安全性。无人系统在军事、物流、农业、环境监测等领域的应用,正在重塑全球的生产和服务模式。本文将详细介绍无人系统的定义、类型、工作原理、关键技术、应用场景及其未来发
- 国产替代 | 星环科技Sophon替代SAS,助力大型国有银行智能化营销
星环科技
数据库架构数据挖掘
分布式架构的|国产智能分析工具在银行交易中,20%的头部优质客户会给银行贡献80%的利润,而赢得一个新客户的成本是保留一个老客户的5至6倍。某大型国有银行在面临此类数据挖掘的业务时,使用的是SAS产品。由于SAS是集中式的,对单台服务器要求太高,算力无法支撑需求,且无法支持可视化的机器学习,对于业务人员来说使用门槛过高。在经过产品选型后,决定采用星环科技的智能分析工具Sophon替换原有SAS,用
- PyTorch知识点总结之一
Rain松
机器学习与深度学习pytorch深度学习python
PyTorch知识点总结之一1.什么是PyTorch?它有什么特点和优势?PyTorch是一个基于Python的科学计算库,它是用于机器学习和深度学习的框架之一。它由Facebook的人工智能研究团队开发和维护,是一个开源的软件包,可以帮助开发者构建各种深度学习模型。PyTorch的特点和优势如下:易于使用和学习:PyTorch采用了类似于Python的语法,使得它容易上手和学习。它还提供了丰富的
- 51、深度学习-自学之路-自己搭建深度学习框架-12、使用我们自己建的架构重写RNN预测网络
小宇爱
深度学习-自学之路深度学习rnn人工智能
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 大语言模型能否完全替代人类?——技术、能力与未来的思考
Hello kele
人工智能
随着人工智能技术的迅猛发展,尤其是大语言模型(如DeepSeek、GPT系列、Grok等)的出现,人们开始探讨一个引人深思的问题:这些智能系统是否有一天能完全替代人类?本文从技术现状、能力边界以及未来趋势三个方面,分析这个问题,并试图给出一种平衡的视角。一、技术现状:大语言模型的能力与局限大语言模型在过去几年中取得了显著进步。可以理解复杂的自然语言,生成连贯的文本,甚至完成编程、分析和创意任务。例
- 使用 ML.NET 开发工业预测系统:从数据到智能决策
威哥说编程
c#AI编程人工智能microsoft
在现代工业领域,随着生产设备和环境传感器的大量部署,生成了海量的实时数据。这些数据不仅可以帮助我们监控设备的健康状况,还能够通过智能分析实现预测性维护、故障检测和生产效率优化等目标。而机器学习技术,尤其是ML.NET,提供了一种高效、灵活的方式来挖掘这些数据背后的潜在价值。本文将带领大家通过使用ML.NET来开发一个简单的工业预测系统,帮助企业提高生产效率,降低故障风险。1.机器学习在工业中的应用
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- 机器学习实战:从理论到实践
静默.\\
机器学习人工智能
随着人工智能技术的迅猛发展,机器学习作为其核心部分,已经广泛应用于各个领域。它不仅在科技公司中扮演着关键角色,在医疗、金融、零售等行业也展现了巨大的潜力。然而,对于许多初学者来说,如何将理论知识转化为实际操作是一个挑战。本文旨在通过一个具体的案例——预测房价,来介绍机器学习的基本流程和具体操作步骤。我们将使用Python编程语言及其相关的科学计算库,如NumPy、Pandas、Scikit-Lea
- 开源模型应用落地-Qwen1.5-MoE-1/3的激活参数量达到7B模型的性能
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言2024.03.28阿里推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。它仅拥有27亿个激活参数,但其性能却能与当前最先进的70亿参数模型,如Mistral7B和Qwen1.5-7B相媲美。但是目前只有HFtransformers和vLLM支持该模型。二、术语介绍2.1.混合专家(MoE)架构是一种机器学习模型的结构设计,它将一个复杂的任务分解成多个相对简单的子任务,
- PyTorch实战:手把手教你完成MNIST手写数字识别任务
吴师兄大模型
PyTorchpytorch人工智能python手写数字数别MNIST深度学习开发语言
系列文章目录Pytorch基础篇01-PyTorch新手必看:张量是什么?5分钟教你快速创建张量!02-张量运算真简单!PyTorch数值计算操作完全指南03-Numpy还是PyTorch?张量与Numpy的神奇转换技巧04-揭秘数据处理神器:PyTorch张量拼接与拆分实用技巧05-深度学习从索引开始:PyTorch张量索引与切片最全解析06-张量形状任意改!PyTorchreshape、tra
- 时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望
xl.liu
架构人工智能
时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望时序大模型如何保证数据的完整性和准确性时序大模型的性能高度依赖于数据的质量和完整性。为了确保模型的预测和分析结果准确可靠,需要采取一系列措施来保证数据的完整性和准确性。数据清洗:去除异常值:通过统计方法或机器学习算法检测并去除异常值,确保数据的合理性。填补缺失值:使用插值方法、均值填充、中位数填充或基于模型的预测
- 机器学习数学基础:36.φ相关系数分析
@心都
机器学习人工智能
用φ相关系数分析性别与心理测验态度关系的教程一、学习目标学会使用φ相关系数分析两个二分变量(如性别男/女、对心理测验态度肯定/否定)之间的关系,并通过卡方检验判断结果是否具有统计学意义。二、数据准备假设我们想研究青年大学生的性别和对心理测验的态度之间的关系,收集到如下2×22×22×2列联表数据(调查了170170170人):肯定否定合计男生222222888888110110110女生18181
- 机器学习数学基础:37.偏相关分析
@心都
机器学习人工智能
偏相关分析教程一、偏相关分析是什么在很多复杂的系统中,比如地理系统,会有多个要素相互影响。偏相关分析就是在这样多要素构成的系统里,不考虑其他要素的干扰,专门去研究两个要素之间关系紧密程度的一种方法。用来衡量这种紧密程度的数值,叫做偏相关系数。举个简单例子,在研究一个地区的房价时,房价会受到很多因素影响,像地段、房屋面积、周边配套设施等。如果我们想知道单纯的房屋面积和房价之间的关系,就可以用偏相关分
- 机器学习数学基础:22.对称矩阵的对角化
@心都
机器学习矩阵概率论
一、核心概念详解(一)内积定义与公式:在nnn维向量空间中,对于向量x⃗=(x1,x2,⋯ ,xn)\vec{x}\=(x_1,x_2,\cdots,x_n)x=(x1,x2,⋯,xn)和y⃗=(y1,y2,⋯ ,yn)\vec{y}\=(y_1,y_2,\cdots,y_n)y=(y1,y2,⋯,yn),内积记作(x⃗,y⃗)(\vec{x},\vec{y})(x,y),其计算公式为(x⃗,y⃗
- 机器学习数学基础:34.点二列
@心都
机器学习概率论人工智能
点二列相关教程一、点二列相关的定义点二列相关是一种统计方法,用于衡量两个变量之间的相关程度。在这种相关分析中,一个变量是正态连续性变量,取值可以是连续的数值,比如身高、体重、考试分数等;另一个是真正的二分名义变量,其两个类别是天然存在、相互独立的,不能再细分,像性别(男/女)、是否吸烟(是/否)、抛硬币的结果(正面/反面)等。二、适用场景点二列相关常用于研究天然二分变量与连续变量之间的关系。例如在
- 免费 MLOps 课程:学习机器学习运维的完整流程
真智AI
学习机器学习运维免费教程
掌握MLOps:训练和跟踪实验、构建ML流水线、模型部署、生产环境监控,并从DevOps采用最佳实践。免费MLOps课程概览(DataTalks.Club提供)课程平台:DataTalks.Club适合人群:有一定Python和ML经验的开发者重点内容:模型训练、实验跟踪、流水线构建、模型部署、监控和DevOps最佳实践目录什么是MLOps?为什么需要MLOps?MLOpsZoomcamp课程介绍
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C