- 《互联网时代教师自主成长的模式研究》论文阅读与思考2
宁超群
2.第二部分教师自主成长的模式建构,实质上是对新网师底层逻辑的描述。你认为,新网师的培训模式与传统常见的培训模式有哪些区别?这些区别有什么意义或价值?读完第二部分后,你对新网师有哪些新的认识或理解?你认为新网师目前哪些方面做得好,哪些方面做得还不够?答:我认为新网师的培训模式与传统常见的培训模式有以下区别:(1)培训对象的参与动机不同。新网师学员的参与是自觉自愿、积极主动,而传统培训更多是被迫参与
- 秀一秀,机器人的金鸡独立
千越创客老师
贵阳市第三实验小学的第7次课程开始啦。恰逢学校的校运会,校园操场上活跃着同学们矫健的身影,机器人教室里端坐着投入的小机器人迷们。由于有部分同学缺席本次课程,孙老师决定让大家复习巩固一下之前学习的内容。前排的同学们专注的小眼神机器人“速度”和“延迟”的单词我们上个星期才学过,可能记得不是很牢固,但我们有妙招,做个小笔记写在本子上时不时翻看一下,请老师帮忙写在小手上,反复多看几次就记住啦。边看笔记边观
- 【定位系列论文阅读】-Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition(一)
醉酒柴柴
论文阅读学习笔记
这里写目录标题概述研究内容Abstract第一段(介绍本文算法大致结构与优点)1.Introduction介绍第一段(介绍视觉位置识别的重要性)第二段(VPR的两种常见方法,本文方法结合了两种方法)第三段(本文贡献)第四段(为证明本文方法优越性,进行的测试以及比较)2.RelatedWork相关工作第一段(介绍早期与深度学习的全局图像描述符)第二段(介绍局部关键点描述符)第三段(局部描述符可以进一
- 论文阅读笔记(十九):YOLO9000: Better, Faster, Stronger
__Sunshine__
笔记YOLO9000detectionclassification
WeintroduceYOLO9000,astate-of-the-art,real-timeobjectdetectionsystemthatcandetectover9000objectcategories.FirstweproposevariousimprovementstotheYOLOdetectionmethod,bothnovelanddrawnfrompriorwork.Theim
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- 周四 2020-01-09 08:00 - 24:30 多云 02h10m
么得感情的日更机器
南昌。二〇二〇年一月九日基本科研[1]:1.论文阅读论文--二小时十分2.论文实现实验--小时3.数学SINS推导回顾--O分4.科研参考书【】1)的《》看0/0页-5.科研文档1)组织工作[1]:例会--英语能力[2]:1.听力--十分2.单词--五分3.口语--五分4.英语文档1)编程能力[2]:1.编程语言C语言--O分2.数据结构与算法C语言数据结构--O分3.编程参考书1)陈正冲的《C语
- 【论文阅读】Mamba:选择状态空间模型的线性时间序列建模(二)
syugyou
Mamba状态空间模型论文阅读
文章目录3.4一个简化的SSM结构3.5选择机制的性质3.5.1和门控机制的联系3.5.2选择机制的解释3.6额外的模型细节A讨论:选择机制C选择SSM的机制Mamba论文第一部分Mamba:选择状态空间模型的线性时间序列建模(一)3.4一个简化的SSM结构如同结构SSM,选择SSM是单独序列变换可以灵活地整合进神经网络。H3结构式最知名SSM结构地基础,其通常包括受线性注意力启发的和MLP交替地
- 菜鸟季:面试前做好这3点,拿到offer的概率轻松提高80%!
菜鸟季
这周,菜菜从面试前、面试中和面试后三个部分来和同学们讲讲面试的技巧还有方法。今天的内容是面试前的准备技巧,同学们记得做好小笔记!(偷偷的告诉你,文末有小福利哦!)一、面试前发个短信在面试之前,记得给HR发个消息,注明名字和面试岗位。在面试结束之后,再发个消息表示感谢,加深HR对你的印象,并且暗示自己在等对方的答复!这个小套路能为你的面试加分哦,可以说是屡试不爽!二、不要忘记带上简历有些公司要求面试
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- MixMAE(MixMIM):用于分层视觉变压器有效预训练的混合和掩码自编码器 论文阅读
皮卡丘ZPC
扩散模型阅读论文阅读
论文:MixMAE(arxiv.org)代码:Sense-X/MixMIM:MixMIM:MixedandMaskedImageModelingforEfficientVisualRepresentationLearning(github.com)摘要:本文提出MixMAE(MixedandmaskAutoEncoder),这是一种简单而有效的预训练方法,适用于各种层次视觉变压器。现有的分层视觉变
- 【论文阅读】LLM4CP: Adapting Large Language Models for Channel Prediction(2024)
Bosenya12
科研学习论文阅读语言模型人工智能信道预测时间序列
摘要Channelprediction(信道预测)isaneffectiveapproach(有效方法)forreducingthefeedback(减少反馈)orestimationoverhead(估计开销)inmassivemulti-inputmulti-output(大规模多输入输出)(m-MIMO)systems.However,existingchannelpredictionmet
- 【论文阅读】AugSteal: Advancing Model Steal With Data Augmentation in Active Learning Frameworks(2024)
Bosenya12
科研学习模型窃取论文阅读模型窃取模型提取数据增强主动学习
摘要Withtheproliferationof(随着)machinelearningmodels(机器学习模型)indiverseapplications,theissueofmodelsecurity(模型的安全问题)hasincreasinglybecomeafocalpoint(日益成为人们关注的焦点).Modelstealattacks(模型窃取攻击)cancausesignifican
- Bert系列:论文阅读Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline
凝眸伏笔
nlp论文阅读bertrerankerretrieval
一句话总结:提出LocalizedContrastiveEstimation(LCE),来优化检索排序。摘要预训练的深度语言模型(LM)在文本检索中表现出色。基于丰富的上下文匹配信息,深度LM微调重新排序器从候选集合中找出更为关联的内容。同时,深度lm也可以用来提高搜索索引,构建更好的召回。当前的reranker方法并不能完全探索到检索结果的效果。因此,本文提出了LocalizedContrast
- A Tutorial on Near-Field XL-MIMO Communications Towards 6G【论文阅读笔记】
Cc小跟班
【论文阅读】相关论文阅读笔记
此系列是本人阅读论文过程中的简单笔记,比较随意且具有严重的偏向性(偏向自己研究方向和感兴趣的),随缘分享,共同进步~论文主要内容:建立XL-MIMO模型,考虑NUSW信道和非平稳性;基于近场信道模型,分析性能(SNRscalinglaws,波束聚焦、速率、DoF)XL-MIMO设计问题:信道估计、波束码本、波束训练、DAMXL-MIMO信道特性变化:UPW➡NUSW空间平稳–>空间非平稳(可视区域
- 论文阅读:scMGCA----模型方法
dundunmm
论文阅读论文阅读人工智能聚类生物聚类单细胞聚类单细胞分析
Yu,Z.,Su,Y.,Lu,Y.etal.Topologicalidentificationandinterpretationforsingle-cellgeneregulationelucidationacrossmultipleplatformsusingscMGCA.NatCommun14,400(2023).https://doi.org/10.1038/s41467-023-36134
- 论文阅读:scHybridBERT
dundunmm
论文阅读机器学习人工智能神经网络深度学习单细胞基因测序
ZhangWei,WuChenjun,XingFeiyang,JiangMingfeng,ZhangYixuan,LiuQi,ShiZhuoxing,DaiQi,scHybridBERT:integratinggeneregulationandcellgraphforspatiotemporaldynamicsinsingle-cellclustering,BriefingsinBioinform
- 【论文阅读】Purloining Deep Learning Models Developed for an Ultrasound Scanner to a Competitor Machine
Bosenya12
科研学习模型窃取论文阅读深度学习人工智能模型安全
TheArtoftheSteal:PurloiningDeepLearningModelsDevelopedforanUltrasoundScannertoaCompetitorMachine(2024)摘要Atransferfunctionapproach(传递函数方法)hasrecentlyproveneffectiveforcalibratingdeeplearning(DL)algorit
- 《Motion Forecasting with Dual Consistency and Multi-Pseudo-Target Supervision》论文阅读之DCMS
山水之间2018
无人驾驶PaperReading大数据轨迹预测自动驾驶人工智能
目录摘要1简介2相关工作3.方法3.1结构3.2双重一致性约束3.3多伪目标监督3.4学习4实验4.1实验装置4.2实验结果4.3消融研究4.4泛化能力5限制6结论DCMS:具有双重一致性和多伪目标监督的运动预测香港科技大学暂无代码。摘要我们提出了一种具有双重一致性约束和多伪目标监督的运动预测新框架。运动预测任务通过结合过去的空间和时间信息来预测车辆的未来轨迹。DCMS的一个关键设计是提出双重一致
- 时序预测相关论文阅读笔记
能力越小责任越小YA
论文阅读笔记时序预测Transformer
笔记链接:【有道云笔记】读论文(记录)https://note.youdao.com/s/52ugLbot用于个人学习记录。
- 【论文阅读|cryoET】本周粗读汇总
吃吃今天努力学习了吗
冷冻电镜三维重建论文阅读
论文1:CryoDRGN-ET:深度重建生成网络以可视化细胞内动态生物分子Abstract虽然冷冻电子断层扫描可以以分子分辨率揭示结构,但图像处理算法仍然是解决原位生物分子结构异质性的瓶颈。本文介绍CryoDRGN-ET用于cryoET断层图的异质重建。CryoDRGN-ET直接从子断层扫描倾斜系列图像中学习三维密度图的深度生成模型,并且可以捕获成分和构象不同的状态。通过原位恢复肺炎支原体核糖体中
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- 【论文阅读】QUEEN: Query Unlearning against Model Extraction(2024)
Bosenya12
科研学习模型窃取论文阅读提取攻击模型安全
摘要Modelextractionattacks(模型提取攻击)currentlyposeanon-negligiblethreat(不可忽视的威胁)tothesecurity(安全性)andprivacy(隐私性)ofdeeplearningmodels.Byqueryingthemodelwithasmalldataset(通过小数据集查询模型)andusingthequeryresultsa
- 【论文阅读33】Deep learning optoacoustic tomography with sparse data
弹伦琴的雷登
【论文阅读系列】人工智能深度学习论文阅读图像处理
Deeplearningoptoacoustictomographywithsparsedata论文题目:基于稀疏数据的深度学习光声断层扫描论文链接:Deeplearningoptoacoustictomographywithsparsedata|NatureMachineIntelligence代码链接:GitHub-ndavoudi/sparse_artefact_unet数据链接:Data发
- 论文阅读瞎记(四) Cascade R-CNN: Delving into High Quality Object Detection 2017
码大哥
深度学习人工智能
概述在物体检测中1,IOU阈值被用于判定正负样本。在低IOU阈值比如0.5的状态下训练模型经常产生噪音预测,然而检测效果会随着IOU增加而降低。两个主要因素:1.训练时的过拟合,正样本指数消失2.检测器最优IOU与输入假设的不匹配。一个单阶段的物体检测器CascadeR-CNN被提出用于解决这些问题。网络由一个检测序列组成,这些序列训练时会伴随IOU增长从而对FP样本更加有选择性地判别。检测器一个
- 【论文阅读】LLM4SGG: Large Language Models for Weakly Supervised Scene Graph Generation
进击的乔洋
论文阅读语言模型人工智能计算机视觉
【论文阅读】LLM4SGG:LargeLanguageModelsforWeaklySupervisedSceneGraphGenerationabstract由于全监督方法严重依赖昂贵标注,最近弱监督场景图生成(WSSGG)研究替代方案出现。在这一点上(Inthisregard),针对WSSGG的研究主要利用图像标题(imagecaption)来获取非局部三元组,而主要关注将非局部三元组建立在图
- Code Llama: Open Foundation Models for Code论文阅读
yang_daxia
大模型llamacodellama
整体介绍CodeLlama发布了3款模型,包括基础模型、Python专有模型和指令跟随模型,参数量分别为7B、13B、34B和70B。这些模型在长达16ktokens的序列上训练。都是基于Llama2。作者针对infilling(FIM)、长上下文、指令专门做了微调long-contextfine-tuning(LCFT).codellama细节CodeLlama模型家族初始化:所有CodeLla
- 【论文阅读】Model Stealing Attacks Against Inductive Graph Neural Networks(2021)
Bosenya12
科研学习模型窃取论文阅读图神经网络模型窃取
摘要Manyreal-worlddata(真实世界的数据)comeintheformofgraphs(以图片的形式).Graphneuralnetworks(GNNs图神经网络),anewfamilyofmachinelearning(ML)models,havebeenproposedtofullyleveragegraphdata(充分利用图数据)tobuildpowerfulapplicat
- VIT论文阅读: A Image is Worth 16x16 Words
Undefined游侠
论文阅读
简介在2024年,大家都知道了transformer的故事,但是在4年前,CNN和Transformer谁才是CV的未来,还没有那么确定。在简介部分,作者提到了一个令人失望的事实,在基于imagenet的实验中发现,transformer的表现差于同尺寸的ResNet。作者把原因归结到biastranslationequivarianceandlocality,这些CNN具有,但是transfor
- 【论文阅读】GLiRA: Black-Box Membership Inference Attack via Knowledge Distillation
Bosenya12
模型窃取科研学习论文阅读知识蒸馏成员推理攻击黑盒
摘要While(虽然)DeepNeuralNetworks(DNNs)havedemonstratedremarkableperformanceintasksrelatedtoperception(感知)andcontrol(控制),therearestillseveralunresolvedconcerns(未解决的问题)regardingtheprivacyoftheirtrainingdat
- 【论文阅读】APMSA: Adversarial Perturbation Against Model Stealing Attacks(2023)
Bosenya12
科研学习模型窃取论文阅读模型窃取防御对抗性扰动
摘要TrainingaDeepLearning(DL)model(训练深度学习模型)requiresproprietarydata(专有数据)andcomputing-intensiveresources(计算密集型资源).Torecouptheirtrainingcosts(收回训练成本),amodelprovidercanmonetizeDLmodelsthroughMachineLearni
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本