同步wx订阅号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.LG 方向,今日共计57篇
[cs.LG]:
【1】 Mitigating Uncertainty in Document Classification
标题:减轻文档分类中的不确定性
作者: Xuchao Zhang, Naren Ramakrishnan
备注:Accepted by NAACL19
链接:https://arxiv.org/abs/1907.07590
【2】 AquaSight: Automatic Water Impurity Detection Utilizing Convolutional Neural Networks
标题:AquaSight:利用卷积神经网络自动检测水中杂质
作者: Ankit Gupta, Elliott Ruebush
链接:https://arxiv.org/abs/1907.07573
【3】 Self-Attentive Hawkes Processes
标题:自注意Hawkes过程
作者: Qiang Zhang, Emine Yilmaz
链接:https://arxiv.org/abs/1907.07561
【4】 Low-Shot Classification: A Comparison of Classical and Deep Transfer Machine Learning Approaches
标题:低镜头分类:经典和深度传输机学习方法的比较
作者: Peter Usherwood, Steven Smit
链接:https://arxiv.org/abs/1907.07543
【5】 Subspace Inference for Bayesian Deep Learning
标题:贝叶斯深度学习的子空间推理
作者: Pavel Izmailov, Andrew Gordon Wilson
备注:Published at UAI 2019
链接:https://arxiv.org/abs/1907.07504
【6】 Improving Heart Rate Variability Measurements from Consumer Smartwatches with Machine Learning
标题:利用机器学习改进消费者智能手表的心率变异性测量
作者: Martin Maritsch, Felix Wortmann
备注:Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2019 International Symposium on Wearable Computers
链接:https://arxiv.org/abs/1907.07496
【7】 Remaining Useful Lifetime Prediction via Deep Domain Adaptation
标题:通过深域自适应进行剩余有用寿命预测
作者: Paulo R. de O. da Costa, Uzay Kaymak
链接:https://arxiv.org/abs/1907.07480
【8】 Improving Outbreak Detection with Stacking of Statistical Surveillance Methods
标题:通过堆叠统计监测方法来改进疫情检测
作者: Moritz Kulessa, Johannes Fürnkranz
链接:https://arxiv.org/abs/1907.07464
【9】 --means: A -means Variant with Robustness and Stability
标题:--means:具有健壮性和稳定性的-means变体
作者: Yang Zhang, Shutao Xia
链接:https://arxiv.org/abs/1907.07442
【10】 Block based Singular Value Decomposition approach to matrix factorization for recommender systems
标题:基于块奇异值分解的推荐系统矩阵分解方法
作者: Prasad Bhavana, Vineet Padmanabhan
链接:https://arxiv.org/abs/1907.07410
【11】 Feature Selection via Mutual Information: New Theoretical Insights
标题:基于互信息的特征选择:新的理论洞察力
作者: Mario Beraha, Marcello Restelli
备注:Accepted for presentation at the International Joint Conference on Neural Networks (IJCNN) 2019
链接:https://arxiv.org/abs/1907.07384
【12】 A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
标题:可解释人工智能(XAI)综述:面向医学XAI
作者: Erico Tjoa, Cuntai Guan
链接:https://arxiv.org/abs/1907.07374
【13】 Learnability for the Information Bottleneck
标题:信息瓶颈的可学习性
作者: Tailin Wu, Max Tegmark
备注:Accepted at UAI 2019
链接:https://arxiv.org/abs/1907.07331
【14】 An Embedding Framework for Consistent Polyhedral Surrogates
标题:一致多面体代理的嵌入框架
作者: Jessie Finocchiaro, Bo Waggoner
链接:https://arxiv.org/abs/1907.07330
【15】 Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods
标题:对抗性安全攻击和对机器学习和深度学习方法的扰动
作者: Arif Siddiqi
链接:https://arxiv.org/abs/1907.07291
【16】 Towards Understanding Generalization in Gradient-Based Meta-Learning
标题:在基于梯度的元学习中理解泛化
作者: Simon Guiroy, Christopher Pal
链接:https://arxiv.org/abs/1907.07287
【17】 An Inductive Synthesis Framework for Verifiable Reinforcement Learning
标题:一种可验证的强化学习归纳综合框架
作者: He Zhu, Suresh Jagannathan
备注:Published on PLDI 2019
链接:https://arxiv.org/abs/1907.07273
【18】 FAHT: An Adaptive Fairness-aware Decision Tree Classifier
标题:FAHT:一种自适应公平性决策树分类器
作者: Wenbin Zhang, Eirini Ntoutsi
备注:Accepted to IJCAI 2019
链接:https://arxiv.org/abs/1907.07237
【19】 DeepTrax: Embedding Graphs of Financial Transactions
标题:DeepTrax:嵌入金融交易图表
作者: C. Bayan Bruss, Keegan E. Hines
链接:https://arxiv.org/abs/1907.07225
【20】 Fairness-enhancing interventions in stream classification
标题:河流分类中增强公平性的干预措施
作者: Vasileios Iosifidis, Eirini Ntoutsi
备注:15 pages, 7 figures. To appear in the proceedings of 30th International Conference on Database and Expert Systems Applications, Linz, Austria August 26 - 29, 2019
链接:https://arxiv.org/abs/1907.07223
【21】 Learning Multimodal Fixed-Point Weights using Gradient Descent
标题:用梯度下降法学习多模态不动点权重
作者: Lukas Enderich, Wolfram Burgard
备注:presented at ESANN 2019 (European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning)
链接:https://arxiv.org/abs/1907.07220
【22】 Online Local Boosting: improving performance in online decision trees
标题:在线局部提升:提高在线决策树的性能
作者: Victor G. Turrisi da Costa, Sylvio Barbon Jr
链接:https://arxiv.org/abs/1907.07207
【23】 Gated Recurrent Neural Network Approach for Multilabel Emotion Detection in Microblogs
标题:用于微博多标签情感检测的门限回归神经网络方法
作者: Prabod Rathnayaka, Damminda Alahakoon
链接:https://arxiv.org/abs/1907.07653
【24】 Robustness properties of Facebook's ResNeXt WSL models
标题:Facebook ResNeXt WSL模型的健壮性
作者: A. Emin Orhan
链接:https://arxiv.org/abs/1907.07640
【25】 On the Importance of News Content Representation in Hybrid Neural Session-based Recommender Systems
标题:基于混合神经会话的推荐系统中新闻内容表示的重要性
作者: Gabriel de Souza P. Moreira, Adilson Marques da Cunha
备注:Short paper. arXiv admin note: text overlap with arXiv:1904.10367
链接:https://arxiv.org/abs/1907.07629
【26】 Clustering Activity-Travel Behavior Time Series using Topological Data Analysis
标题:使用拓扑数据分析的聚类活动-出行行为时间序列
作者: Renjie Chen, Karthik Konduri
链接:https://arxiv.org/abs/1907.07603
【27】 Zygote: A Differentiable Programming System to Bridge Machine Learning and Scientific Computing
标题:zygote:一个连接机器学习和科学计算的可微程序设计系统
作者: Mike Innes, Will Tebbutt
备注:Submitted to NeurIPS 2019
链接:https://arxiv.org/abs/1907.07587
【28】 Deep Metric Learning with Alternating Projections onto Feasible Sets
标题:可行集上交替投影的深度度量学习
作者: Oğul Can, A. Aydın Alatan
备注:10 pages, 1 figure, submitted to NeurIPS 2019
链接:https://arxiv.org/abs/1907.07585
【29】 Machine Learning based Simulation Optimisation for Trailer Management
标题:基于机器学习的拖车管理仿真优化
作者: Dylan Rijnen, Yingqian Zhang
备注:Submitted to IEEE SMC 2019
链接:https://arxiv.org/abs/1907.07568
【30】 Conversational Help for Task Completion and Feature Discovery in Personal Assistants
标题:个人助理中任务完成和功能发现的对话帮助
作者: Madan Gopal Jhawar, Swati Valecha
链接:https://arxiv.org/abs/1907.07564
【31】 Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samples
标题:使用少量样本的贝叶斯回归和稀有事件统计的输出加权最优抽样
作者: Themistoklis P. Sapsis
链接:https://arxiv.org/abs/1907.07552
【32】 Photonic architecture for reinforcement learning
标题:用于强化学习的光子结构
作者: Fulvio Flamini, Hans J. Briegel
链接:https://arxiv.org/abs/1907.07503
【33】 Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
标题:通过近似消息传递的斜率的算法分析和统计估计
作者: Zhiqi Bu, Weijie Su
链接:https://arxiv.org/abs/1907.07502
【34】 Learning Variable Impedance Control for Contact Sensitive Tasks
标题:接触敏感任务的学习变阻抗控制
作者: Miroslav Bogdanovic, Ludovic Righetti
链接:https://arxiv.org/abs/1907.07500
【35】 Real-time Evasion Attacks with Physical Constraints on Deep Learning-based Anomaly Detectors in Industrial Control Systems
标题:基于深度学习的工业控制系统中基于深度学习异常检测器的物理约束实时规避攻击
作者: Alessandro Erba, Nils Ole Tippenhauer
链接:https://arxiv.org/abs/1907.07487
【36】 Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
标题:目标检测中的基准稳健性:冬天来临时的自主驾驶
作者: Claudio Michaelis, Wieland Brendel
链接:https://arxiv.org/abs/1907.07484
【37】 SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking
标题:SUMBT:用于通用可扩展信念跟踪的时隙话语匹配
作者: Hwaran Lee, Tae-Yoon Kim
链接:https://arxiv.org/abs/1907.07421
【38】 DeepNC: Deep Generative Network Completion
标题:DeepNC:深度生成网络完成
作者: Cong Tran, Michael Gertz
链接:https://arxiv.org/abs/1907.07381
【39】 Dynamic Malware Analysis with Feature Engineering and Feature Learning
标题:基于特征工程和特征学习的动态恶意软件分析
作者: Zhaoqi Zhang, Wei Wang
链接:https://arxiv.org/abs/1907.07352
【40】 : Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
标题::具有双通道误差补偿压缩的并行随机梯度下降
作者: Hanlin Tang, Ji Liu
链接:https://arxiv.org/abs/1907.07346
【41】 End-To-End Prediction of Emotion From Heartbeat Data Collected by a Consumer Fitness Tracker
标题:由消费者健康跟踪器收集的心跳数据对情感的端到端预测
作者: Ross Harper, Joshua Southern
链接:https://arxiv.org/abs/1907.07327
【42】 A Neural Network Detector for Spectrum Sensing under Uncertainties
标题:一种用于不确定条件下光谱传感的神经网络检测器
作者: Ziyu Ye, Larry Milstein
链接:https://arxiv.org/abs/1907.07326
【43】 Deep Learning for Pneumothorax Detection and Localization in Chest Radiographs
标题:深入学习胸片中气胸的检测和定位
作者: André Gooßen, Axel Saalbach
链接:https://arxiv.org/abs/1907.07324
【44】 STRASS: A Light and Effective Method for Extractive Summarization Based on Sentence Embeddings
标题:Strass:一种基于句子嵌入的轻量级高效摘录方法
作者: Léo Bouscarrat, Cécile Pereira
备注:To appear in 2019 ACL Student Research Workshop
链接:https://arxiv.org/abs/1907.07323
【45】 MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation
标题:MedCATTrainer:具有主动学习和研究用例特定定制的生物医学自由文本注释界面
作者: Thomas Searle, Richard Dobson
链接:https://arxiv.org/abs/1907.07322
【46】 Comparison of Neural Network Architectures for Spectrum Sensing
标题:光谱传感的神经网络结构比较
作者: Ziyu Ye, Larry Milstein
链接:https://arxiv.org/abs/1907.07321
【47】 A General Framework of Learning Multi-Vehicle Interaction Patterns from Videos
标题:一种从视频中学习多车辆交互模式的通用框架
作者: Chengyuan Zhang, Ding Zhao
备注:2019 IEEE Intelligent Transportation Systems Conference (ITSC)
链接:https://arxiv.org/abs/1907.07315
【48】 Deep learning scheme for microwave photonic analog broadband signal recovery
标题:用于微波光子模拟宽带信号恢复的深度学习方案
作者: Shaofu Xu, Weiwen Zou
链接:https://arxiv.org/abs/1907.07312
【49】 Dynamic optimization with side information
标题:带边信息的动态优化
作者: Dimitris Bertsimas, Bradley Sturt
链接:https://arxiv.org/abs/1907.07307
【50】 Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics
标题:通过视觉分析解释对抗性机器学习的脆弱性
作者: Yuxin Ma, Ross Maciejewski
链接:https://arxiv.org/abs/1907.07296
【51】 Caching as an Image Characterization Problem using Deep Convolutional Neural Networks
标题:使用深度卷积神经网络作为图像表征问题的缓存
作者: Yantong Wang, Vasilis Friderikos
链接:https://arxiv.org/abs/1907.07263
【52】 Iterative temporal differencing with random synaptic feedback weights support error backpropagation for deep learning
标题:具有随机突触反馈权重的迭代时间差分支持深度学习的误差反向传播
作者: Aras R. Dargazany
链接:https://arxiv.org/abs/1907.07255
【53】 Leveraging Experience in Lazy Search
标题:利用懒惰搜索中的经验
作者: Mohak Bhardwaj, Siddhartha Srinivasa
链接:https://arxiv.org/abs/1907.07238
【54】 ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accelerators without Retraining
标题:ALWANN:无需重新训练的深度神经网络加速器自动分层逼近
作者: Vojtech Mrazek, Muhammad Shafique
备注:Accepted for 2019 IEEE/ACM International Conference On Computer-Aided Design (ICCAD'19)
链接:https://arxiv.org/abs/1907.07229
【55】 Modeling Human Annotation Errors to Design Bias-Aware Systems for Social Stream Processing
标题:为社会流处理设计偏向感知系统的人类注释错误建模
作者: Rahul Pandey, Hemant Purohit
备注:To appear in International Conference on Advances in Social Networks Analysis and Mining (ASONAM '19), Vancouver, BC, Canada
链接:https://arxiv.org/abs/1907.07228
【56】 Helen: Maliciously Secure Coopetitive Learning for Linear Models
标题:Helen:线性模型的恶意安全合作学习
作者: Wenting Zheng, Ion Stoica
链接:https://arxiv.org/abs/1907.07212
【57】 Deciphering Dynamical Nonlinearities in Short Time Series Using Recurrent Neural Networks
标题:用递归神经网络破译短时间序列中的动态非线性
作者: Radhakrishnan Nagarajan
备注:18 pages, 7 Figures, 1 Table
链接:https://arxiv.org/abs/1907.07181
翻译:腾讯翻译君