如果我们知道给定的数组已排序(按频率的非递减顺序),我们可以在 O(n) 时间内生成霍夫曼代码。以下是用于排序输入的 O(n) 算法。
1.创建两个空队列。
2.为每个唯一字符创建一个叶节点,并按频率非降序将其入队到第一个队列。最初第二个队列是空的。
3.通过检查两个队列的前端以最小频率使两个节点出队。重复以下步骤两次
1. 如果第二个队列为空,则从第一个队列中出队。
2. 如果第一个队列为空,则从第二个队列中出队。
3. 否则,比较两个队列的前端并将最小值出队。
4.创建一个新的内部节点,其频率等于两个节点频率的总和。将第一个 Dequeued 节点作为其左子节点,将第二个 Dequeued 节点作为右子节点。将此节点排入第二个队列。
5.当队列中有多个节点时,重复步骤#3 和#4。剩下的节点是根节点,树就完成了。
// C++ Program for Efficient Huffman Coding for Sorted input
#include
using namespace std;
// This constant can be avoided by explicitly
// calculating height of Huffman Tree
#define MAX_TREE_HT 100
// A node of huffman tree
class QueueNode {
public:
char data;
unsigned freq;
QueueNode *left, *right;
};
// Structure for Queue: collection
// of Huffman Tree nodes (or QueueNodes)
class Queue {
public:
int front, rear;
int capacity;
QueueNode** array;
};
// A utility function to create a new Queuenode
QueueNode* newNode(char data, unsigned freq)
{
QueueNode* temp = new QueueNode[(sizeof(QueueNode))];
temp->left = temp->right = NULL;
temp->data = data;
temp->freq = freq;
return temp;
}
// A utility function to create a Queue of given capacity
Queue* createQueue(int capacity)
{
Queue* queue = new Queue[(sizeof(Queue))];
queue->front = queue->rear = -1;
queue->capacity = capacity;
queue->array = new QueueNode*[(queue->capacity
* sizeof(QueueNode*))];
return queue;
}
// A utility function to check if size of given queue is 1
int isSizeOne(Queue* queue)
{
return queue->front == queue->rear
&& queue->front != -1;
}
// A utility function to check if given queue is empty
int isEmpty(Queue* queue) { return queue->front == -1; }
// A utility function to check if given queue is full
int isFull(Queue* queue)
{
return queue->rear == queue->capacity - 1;
}
// A utility function to add an item to queue
void enQueue(Queue* queue, QueueNode* item)
{
if (isFull(queue))
return;
queue->array[++queue->rear] = item;
if (queue->front == -1)
++queue->front;
}
// A utility function to remove an item from queue
QueueNode* deQueue(Queue* queue)
{
if (isEmpty(queue))
return NULL;
QueueNode* temp = queue->array[queue->front];
if (queue->front
== queue
->rear) // If there is only one item in queue
queue->front = queue->rear = -1;
else
++queue->front;
return temp;
}
// A utility function to get from of queue
QueueNode* getFront(Queue* queue)
{
if (isEmpty(queue))
return NULL;
return queue->array[queue->front];
}
/* A function to get minimum item from two queues */
QueueNode* findMin(Queue* firstQueue, Queue* secondQueue)
{
// Step 3.a: If first queue is empty, dequeue from
// second queue
if (isEmpty(firstQueue))
return deQueue(secondQueue);
// Step 3.b: If second queue is empty, dequeue from
// first queue
if (isEmpty(secondQueue))
return deQueue(firstQueue);
// Step 3.c: Else, compare the front of two queues and
// dequeue minimum
if (getFront(firstQueue)->freq
< getFront(secondQueue)->freq)
return deQueue(firstQueue);
return deQueue(secondQueue);
}
// Utility function to check if this node is leaf
int isLeaf(QueueNode* root)
{
return !(root->left) && !(root->right);
}
// A utility function to print an array of size n
void printArr(int arr[], int n)
{
int i;
for (i = 0; i < n; ++i)
cout << arr[i];
cout << endl;
}
// The main function that builds Huffman tree
QueueNode* buildHuffmanTree(char data[], int freq[],
int size)
{
QueueNode *left, *right, *top;
// Step 1: Create two empty queues
Queue* firstQueue = createQueue(size);
Queue* secondQueue = createQueue(size);
// Step 2:Create a leaf node for each unique character
// and Enqueue it to the first queue in non-decreasing
// order of frequency. Initially second queue is empty
for (int i = 0; i < size; ++i)
enQueue(firstQueue, newNode(data[i], freq[i]));
// Run while Queues contain more than one node. Finally,
// first queue will be empty and second queue will
// contain only one node
while (
!(isEmpty(firstQueue) && isSizeOne(secondQueue))) {
// Step 3: Dequeue two nodes with the minimum
// frequency by examining the front of both queues
left = findMin(firstQueue, secondQueue);
right = findMin(firstQueue, secondQueue);
// Step 4: Create a new internal node with frequency
// equal to the sum of the two nodes frequencies.
// Enqueue this node to second queue.
top = newNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
enQueue(secondQueue, top);
}
return deQueue(secondQueue);
}
// Prints huffman codes from the root of Huffman Tree. It
// uses arr[] to store codes
void printCodes(QueueNode* root, int arr[], int top)
{
// Assign 0 to left edge and recur
if (root->left) {
arr[top] = 0;
printCodes(root->left, arr, top + 1);
}
// Assign 1 to right edge and recur
if (root->right) {
arr[top] = 1;
printCodes(root->right, arr, top + 1);
}
// If this is a leaf node, then it contains one of the
// input characters, print the character and its code
// from arr[]
if (isLeaf(root)) {
cout << root->data << ": ";
printArr(arr, top);
}
}
// The main function that builds a Huffman Tree and print
// codes by traversing the built Huffman Tree
void HuffmanCodes(char data[], int freq[], int size)
{
// Construct Huffman Tree
QueueNode* root = buildHuffmanTree(data, freq, size);
// Print Huffman codes using the Huffman tree built
// above
int arr[MAX_TREE_HT], top = 0;
printCodes(root, arr, top);
}
// Driver code
int main()
{
char arr[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
int freq[] = { 5, 9, 12, 13, 16, 45 };
int size = sizeof(arr) / sizeof(arr[0]);
HuffmanCodes(arr, freq, size);
return 0;
}
// This code is contributed by rathbhupendra
Output:
f: 0 c: 100 d: 101 a: 1100 b: 1101 e: 111
java代码实现如下:
// JavaScript program for the above approach
// Class for the nodes of the Huffman tree
class QueueNode {
constructor(data = null, freq = null, left = null, right = null) {
this.data = data;
this.freq = freq;
this.left = left;
this.right = right;
}
// Function to check if the following
// node is a leaf node
isLeaf() {
return (this.left == null && this.right == null);
}
}
// Class for the two Queues
class Queue {
constructor() {
this.queue = [];
}
// Function for checking if the
// queue has only 1 node
isSizeOne() {
return this.queue.length == 1;
}
// Function for checking if
// the queue is empty
isEmpty() {
return this.queue.length == 0;
}
// Function to add item to the queue
enqueue(x) {
this.queue.push(x);
}
// Function to remove item from the queue
dequeue() {
return this.queue.shift();
}
}
// Function to get minimum item from two queues
function findMin(firstQueue, secondQueue) {
// Step 3.1: If second queue is empty,
// dequeue from first queue
if (secondQueue.isEmpty()) {
return firstQueue.dequeue();
}
// Step 3.2: If first queue is empty,
// dequeue from second queue
if (firstQueue.isEmpty()) {
return secondQueue.dequeue();
}
// Step 3.3: Else, compare the front of
// two queues and dequeue minimum
if (firstQueue.queue[0].freq < secondQueue.queue[0].freq) {
return firstQueue.dequeue();
}
return secondQueue.dequeue();
}
// The main function that builds Huffman tree
function buildHuffmanTree(data, freq, size) {
// Step 1: Create two empty queues
let firstQueue = new Queue();
let secondQueue = new Queue();
// Step 2: Create a leaf node for each unique
// character and Enqueue it to the first queue
// in non-decreasing order of frequency.
// Initially second queue is empty.
for (let i = 0; i < size; i++) {
firstQueue.enqueue(new QueueNode(data[i], freq[i]));
}
// Run while Queues contain more than one node.
// Finally, first queue will be empty and
// second queue will contain only one node
while (!(firstQueue.isEmpty() && secondQueue.isSizeOne())) {
// Step 3: Dequeue two nodes with the minimum
// frequency by examining the front of both queues
let left = findMin(firstQueue, secondQueue);
let right = findMin(firstQueue, secondQueue);
// Step 4: Create a new internal node with
// frequency equal to the sum of the two
// nodes frequencies. Enqueue this node
// to second queue.
let top = new QueueNode("$", left.freq + right.freq, left, right);
secondQueue.enqueue(top);
}
return secondQueue.dequeue();
}
// Prints huffman codes from the root of
// Huffman tree. It uses arr[] to store codes
function printCodes(root, arr) {
// Assign 0 to left edge and recur
if (root.left) {
arr.push(0);
printCodes(root.left, arr);
arr.pop();
}
// Assign 1 to right edge and recur
if (root.right) {
arr.push(1);
printCodes(root.right, arr);
arr.pop();
}
// If this is a leaf node, then it contains
// one of the input characters, print the
// character and its code from arr[]
if (root.isLeaf()) {
let output = root.data + ": ";
for (let i = 0; i < arr.length; i++) {
output += arr[i];
}
console.log(output);
}
}
// The main function that builds a Huffman
// tree and print codes by traversing the
// built Huffman tree
function HuffmanCodes(data, freq, size) {
// Construct Huffman Tree
let root = buildHuffmanTree(data, freq, size);
// Print Huffman codes using the Huffman
// tree built above
let arr = [];
printCodes(root, arr);
}
// Driver code
let arr = ["a", "b", "c", "d", "e", "f"];
let freq = [5, 9, 12, 13, 16, 45];
let size = arr.length;
HuffmanCodes(arr, freq, size);
// This code is contributed by Prince Kumar
时间复杂度: O(n)
如果输入没有排序,需要先排序后才能被上面的算法处理。可以使用在 Theta(nlogn) 中运行的堆排序或合并排序来完成排序。因此,对于未排序的输入,整体时间复杂度变为 O(nlogn)。
辅助空间: O(n)