操作系统对内存的划分和动态分配
内存空间的分配与回收 | 由操作系统完成主存储器空间的分配和管理,使程序员摆脱存储分配的麻烦,提高编程效率。 |
---|---|
地址转换 | 在多道程序环境下,程序中的逻辑地址与内存中的物理地址不可能一致 因此存储管理必须提供地址变换功能,把逻辑地址转换成相应的物理地址。 |
内存空间的扩充 | 利用虚拟存储技术或自动覆盖技术,从逻辑上扩充内存 |
存储保护 | 保证各道作业在各自的存储空间内运行,互不干扰 |
源程序 -> 可执行程序:
静态链接。
在程序运行之前,先将各目标模块及它们所需的库涵数链接成一个完整的可执行程序,以后不再拆开。
装入时动态链接。
将用户源程序编译后所得到的一组目标模块,在装入内存时,采用边装入边链接的方式。
运行时动态链接。
对某些目标模块的链接,是在程序执行中需要该目标模块时才进行的。其优点是便于修改和更新,便于实现对目标模块的共享。
绝对装入。
在编译时,若知道程序将骁留在内存的某个位置,则编译程序将产生绝对地址的目标代码。绝对装入程序按照装入模块中的地址,将程序和数据装入内存。由于程序中的逻辑地址与实际内存地址完全相同,因此不需对程序和数据的地址进行修改。绝对装入方式只适用于单道程序环境。
另外,程序中所用的绝对地址,可在编译或汇编时给出,也可由程序员直接赋予。而通常情况下在程序中采用的是符号地址,编译或汇编时再转换为绝对地址。
可重定位装入。
在多道程序环境下.多个目标模块的起始地址(简称始址)通常都从0开始,程序中的其他地址都是相对于始址的,此时应采用可重定位装入方式。根据内存的当前情况,将装入模块装入内存的适当位置。装入时对目标程序中指令和数据的修改过程称为重定位,地址变换通常是在装入时一次完成的,所以又称静态重定位。
静态重定位的特点是,一个作业装入内存时,必须给它分配要求的全部内存空间,若没有足够的内存,则不能装入该作业。
此外,作业一旦进入内存,整个运行期间就不能在内存中移动,也不能再屮请内存空间。
动态运行时装入,也称动态重定位。
程序在内存中若发生移动,则需要采用动态的装入方式。装入程序把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正要执行时才进行。因此,装入内存后的所有地址均为相对地址。这种方式需要一个重定位寄存器的支持。
动态重定位的特点如下:可以将程序分配到不连续的存储区中:在程序运行之前可以只装入它的部分代码即可投入运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享,可以向用户提供一个比存储空间大得多的地址空间。
编译后,每个目标模块都从0号单元开始编址,这称为该目标模块的相对地址(或逻辑地址)。当链接程序将各个模块链接成一个完整的可执行目标程序时,链接程序顺序依次按各个模块的相对地址构成统一的从0号单元开始编址的逻辑地垃空问。
用户程序和程序员只需知道逻辑地址,而内存管理的具体机制则是完全透明的,只有系统编程人员才会涉及内存管理的具体机制。不同进程可以有相同的逻辑地址,因为这些相同的逻辑地址可以映射到主存的不同位置。
物理地址空间是指内存中物理单元的集合,它是地址转换的最终地址,进程在运行时执行指令和访问数据,最后都要通过物理地址从主存中存取。
当装入程序将可执行代码装入内存时,必须通过地址转换将逻辑地址转换成物理地址,这个过程称为地址重定位;
两种方法:
引入了覆盖技术,用来解决 “程序大小超过物理内存总和” 的问题‘
覆盖技术的思想:将程序分为多个段(多个模块)。常用的段常驻内存,不常用的段在需要时调入内存。内存中分为一个“固定区”和若干个“覆盖区”。需要常驻内存的段放在“固定区”中,调入后就不再调出(除非运行结束)不常用的段放在“覆盖区”,需要用到时调入内存,用不到时调出内存必须由程序员声明覆盖结构,操作系统完成自动覆盖。
缺点:对用户不透明,增加了用户编程负担。覆盖技术只用于早期的操作系统中,现在已成为历史。
交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些已具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)
中级调度(内存调度),就是要决定将哪个处于挂起状态的进程重新调入内存。
暂时换出外存等待的进程状态为挂起状态(挂起态,suspend)
具有对换功能的操作系统中,通常把磁盘空间分为文件区和对换区两部分。
文件区主要用于存放文件,主要追求存储空间的利用率,因此对文件区空间的管理采用离散分配方式;
对换区空间只占磁盘空间的小部分,被换出的进程数据就存放在对换区。由于对换的速度直接影响到系统的整体速度,因此对换区空间的管理主要追求换入换出速度,因此通常对换区采用连续分配方式(学过文件管理章节后即可理解)。
总之,对换区的I/O速度比文件区的更快。
交换通常在许多进程运行且内存吃紧时进行,而系统负荷降低就暂停。
例如:在发现许多进程运行时经常发生缺页,就说明内存紧张,此时可以换出一些进程; 如果缺页率明显下降,就可以暂停换出。
可优先换出阻塞进程;可换出优先级低的进程;为了防止优先级低的进程在被调入内存后很快又被换出,有的系统还会考虑进程在内存的驻留时间…
(注意:PCB会常驻内存,不会被换出外存)
在单一连续分配方式中,内存被分为系统区和用户区。系统区通常位于内存的低地址部分,用于存放操作系统相关数据;用户区用于存放用户进程相关数据。
内存中只能有一道用户程序,用户程序独占整个用户区空间。
优点:实现简单;无外部碎片;可以采用覆盖技术扩充内存;不一定需要采取内存保护(eg:早期的PC操作系统MS-DOS)。
缺点:只能用于单用户、单任务的操作系统中;有内部碎片;存储器利用率极低。
整个用户空间划分为若干个固定大小的分区,在每个分区中只装入一道作业,
划分方式:
分区大小相等:缺乏灵活性,但是很适合用于用一台计算机控制多个相同对象的场合
(比如:钢铁厂有n个相同的炼钢炉,就可把内存分为n个大小相等的区域存放n个炼钢炉控制程序)
分区大小不等:增加了灵活性,可以满足不同大小的进程需求。根据常在系统中运行的作业大小情况进行划分
(比如:划分多个小分区、适量中等分区、少量大分区)
操作系统需要建立一个数据结构——分区说明表,来实现各个分区的分配与回收。每个表项对应一个分区,通常按分区大小排列。每个表项包括对应分区的大小、起始地址、状态(是否已分配)。
优点:实现简单,无外部碎片。
缺点:
动态分区分配又称为可变分区分配。
这种分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。
因此系统分区的大小和数目是可变的。
(eg:假设某计算机内存大小为64MB,系统区8MB,用户区共56MB…)
当很多个空闲分区都能满足需求时,应该选择哪个分区进行分配?
算法 | 算法思想 | 分区排列顺序 | 优点 | 缺点 |
---|---|---|---|---|
首次适应 | 从头到尾找适合的分区 | 空闲分区以地址递增次序排列 | 综合看性能最好。算法开销小,回收分区后一般不需要对空闲分区队列重新排序 | |
最佳适应 | 优先使用更小的分区,以保留更多大分区 | 空闲分区以容量递增次序排列 | 会有更多的大分区被保留下来,更能满足大进程需求 | 会产生很多太小的、难以利用的碎片;算法开销大,回收分区后可能需要对空闲分区队列重新排序 |
最坏适应 | 优先使用更大的分区,以防止产生太小的不可用的碎片 | 空闲分区以容量递减次序排列 | 可以减少难以利用的小碎片 | 大分区容易被用完,不利于大进程; 算法开销大(原因同上) |
邻近适应 | 由首次适应演变而来,每次从上次查找结束位置开始查找 | 空闲分区以地址递增次序排列(可排列成循环链表) | 不用每次都从低地址的小分区开始检索。算法开销小(原因同首次适应算法) | 会使高地址的大分区也被用完 |
如何进行分区的分配与回收操作?假设系统采用的数据结构是“空闲分区表”…如何分配?
有相邻就合并分区表,无就创建一个表项。
位置 | 分区名称 | 如何分 | 编号 |
---|---|---|---|
内存 | 页框 | 将内存空间分为一个个大小相等的分区 | 页框号,从0开始 |
进程的逻辑地址空间 | “页”或“页面” | 与页框大小相等的一个个部分 | 页号,从0开始 |
(页框=页帧=内存块=物理块=物理页面)。(页框号=页帧号=内存块号=物理块号=物理页号)
操作系统以页框为单位为各个进程分配内存空间。进程的每个页面分别放入一个页框中。也就是说,进程的页面与内存的页框有一一对应的关系。各个页面不必连续存放,可以放到不相邻的各个页框中。
(注:进程的最后一个页面可能没有一个页框那么大。也就是说,分页存储有可能产生内部碎片,因此页框不能太大,否则可能产生过大的内部碎片造成浪费)
为了能知道进程的每个页面在内存中存放的位置,操作系统要为每个进程建立一张页表。
注:页表通常存在PCB(进程控制块)中
假设某系统物理内存大小为4GB,页面大小为4KB,则每个页表项至少应该为多少字节?
内存块大小 = 页面大小 = 4KB = 212B
4GB 的内存总共会被分为 232 / 212 = 220 个内存块
内存块号的范围应该是 0 ~ (220-1)
内存块号至少要用 20bit 来表示
至少要用 3B 来表示块号(3*8=24bit)
由于页号是隐含的,因此每个页表项占3B,存储整个页表至少需要3*(n+1)B
注意:页表记录的只是内存块号,而不是内存块的起始地址!J 号内存块的起始地址 = J * 内存块大小
在系统中通常设置一个页表寄存器 (PTR),存放页表在内存的起始地址 F 和页表长度 M.
进程未执行时,页表的始址和长度存放在进程控制块中,当进程执行时,才将页表始址和长度存入页表寄存器。
设页面大小为L,逻辑地址A到物理地址E的变换过程如下(逻辑地址、页号、每页的长度都是十进制数):
要注意区分页表长度和页表项长度。页表长度的值是指一共有多少页,页表项长度是指页地址占多大的存储空间。
计算E = b * L + W,得到的物理地址E去访问内存。
以上整个地址变换过程均是由硬件自动完成的。
若页面大小为 1KB,页号 2 对应的物理块为 b = 8,计算逻辑地址 A = 2500 的物理地址 E 的过程如下:
P = 2500 / 1K = 2,
W = 2500 % 1K = 452,
查找得到页号 2 对应的物理块的块号为 8,E = 8 × 1024 + 452 = 8644。
快表,又称联想寄存器(TLB,translation lookaside buffer),是一种访问速度比内存快很多的高速缓存(TLB不是内存!),用来存放最近访问的页表项的副本,可以加速地址变换的速度。一般集成在CPU内部.
与此对应,内存中的页表常称为慢表。
如何转换:
CPU给出逻辑地址,由某个硬件算得页号、页内偏移量,将页号与快表中的所有页号进行比较。
如果找到匹配的页号,说明要访问的页表项在快表中有副本,则直接从中取出该页对应的内存块号,再将内存块号与页内偏移量 拼接形成物理地址,最后,访问该物理地址对应的内存单元。
因此,若快表命中,则访问某个逻辑地址仅需一次访存即可。
如果没有找到匹配的页号,则需要访问内存中的页表,找到对应页表项,得到页面存放的内存块号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。
因此,若快表未命中,则访问某个逻辑地址需要两次访存
(注意:在找到页表项后,应同时将其存入快表,以便后面可能的再次访问。
但若快表已满,则必须按照一定的算法对旧的页表项进行替换)
地址变换过程 | 访问一个逻辑地址的访存次数 | |
---|---|---|
基本地址变换机构 | ①算页号、页内偏移量 ②检查页号合法性 ③查页表,找到页面存放的内存块号 ④根据内存块号与页内偏移量得到物理地址 ⑤访问目标内存单元 |
两次访存具有 |
快表的地址变换机构 | ①算页号、页内偏移量 ②检查页号合法性 ③查快表。若命中,即可知道页面存放的内存块号,可直接进行⑤若未命中则进行④ ④查页表,找到页面存放的内存块号,并且将页表项复制到快表中 ⑤根据内存块号与页内偏移量得到物理地址 ⑥访问目标内存单元 |
快表命中,只需一次访存 快表未命中,需要两次访存 |
TLB 和普通 Cache 的区别——TLB 中只有页表项的副本,而普通 Cache 中可能会有其他各种数据的副本
时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)
空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的)
把页表再分页并离散存储,然后再建立一张页表记录页表各个部分的存放位置,称为页目录表,或称外层页表,或称顶层页表结构:
若分为两级页表后,页表依然很长,则可以采用更多级页表,一般来说各级页表的大小不能超过一个页面
例:某系统按字节编址,采用 40 位逻辑地址,页面大小为 4KB,页表项大小为 4B,假设采用纯页式存储,则要采用()级页表,页内偏移量为()位?
页面大小= 4KB = 212B,按字节编址,因此页内偏移量为12位
页号 = 40-12 = 28 位, 页表项大小= 4B 页面大小= 212B,则每个页面可存放212/ 4= 210 个页表项
因此各级页表最多包含 210 个页表项,需要10位二进制位才能映射到 210 个页表项,因此每一级的页表对应页号应为10位。总共28位的页号至少要分为三级
两级页表的访存次数分析(假设没有快表机构)
第一次访存:访问内存中的页目录表
第二次访存:访问内存中的二级页表
第三次访存:访问目标内存单元
进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址
内存分配规则:以段为单位进行分配,每个段在内存中占据连续空间,但各段之间可以不相邻。
由于是按逻辑功能模块划分,用户编程更方便,程序的可读性更高
页是信息的物理单位。分页的主要目的是为了实现离散分配,提高内存利用率。分页仅仅是系统管理上的需要,完全是系统行为,对用户是不可见的。
段是信息的逻辑单位。分段的主要目的是更好地满足用户需求。一个段通常包含着一组属于一个逻辑模块的信息。
分段对用户是可见的,用户编程时需要显式地给出段名。
页的大小固定且由系统决定。
段的长度却不固定,决定于用户编写的程序。
分页的用户进程地址空间是一维的,程序员只需给出一个记忆符即可表示一个地址。
分段的用户进程地址空间是二维的,程序员在标识一个地址时,既要给出段名,也要给出段内地址。
分段比分页更容易实现信息的共享和保护。
优点 | 缺点 | |
---|---|---|
分页管理 | 内存空间利用率高,不会产生外部碎片, 只会有少量的页内碎片 | 不方便按照逻辑模块实现信息的共享和保护 |
分段管理 | 很方便按照逻辑模块实现信息的共享和保护 | 如果段长过大,为其分配很大的连续空间会很不方便。 另外,段式管理会产生外部碎片 |
将进程按逻辑模块分段,再将各段分页(如每个页面4KB)
再将内存空间分为大小相同的内存块/页框/页帧/物理块
为什么要进行内存管理?
在单道批处理系统阶段,一个系统在一个时间段内只执行一个程序,内存的分配极其简单,即仅分配给当前运行的进程。引入多道程序的并发执行后,进程之间共享的不仅仅是处理机,还有主存储器。然而,共享主存会形成一些特殊的挑战。若不对内存进行管理,则容易导致内存数据的混乱,以至于限制进程的并发执行。因此,为了更好地支持多道程序并发执行,必须进行内存管理。
页式管理中每个页表项大小的下限如何决定?
页表项的作用是找到该页在内存中的位置。以32位逻辑地址空间、字节编址单位、一页 4KB 为例,地址空间内共含有232B/4KB=1M页,20位才能保证表示范围能容纳所有页面,又因为以字节作为编址单位,即页表项的大小>=[20/8]=3B.所以在这个条件下,为了保证页表项能够指向所有页面,页表項的大小应该大于3B:当然,也可选择更大的页表项大小,让一个页面能够正好容下整数个页表项,以方便存储(例如取成4B,一页正好可以装下1K个页表项),或增加一些其他信息。
多级页表解决了什么问题又会带来什么问题?
多级页表解决了当逻辑地址空间过大时,页表的长度会大大增加的问题。而采用多级页表时,一次访盘需要多次访问内存甚至磁盘,会大大增加一次访存的时间。