Keras防止过拟合:模型训练提前停止

EarlyStopping是Callbacks的一种,callbacks用于指定在每个epoch开始和结束的时候进行哪种特定操作,即用于提前停止训练的callbacks。之所以要提前停止训练,是因为继续训练会导致测试集上的准确率下降。那继续训练导致测试准确率下降的原因笔者猜测可能是1. 过拟合 2. 学习率过大导致不收敛 3. 使用正则项的时候,Loss的减少可能不是因为准确率增加导致的,而是因为权重大小的降低。

callback = keras.callbacks.EarlyStopping(monitor='loss', patience=1)#使用loss作为监测数据,轮数设置为1
model = Sequential()
model.add(Dense(10))
model.compile(loss='categorical_crossentropy', optimizer='sgd', loss='mse')
model.fit(x_train, y_train,epochs=10, batch_size=1, callbacks=[callback])

参数说明:

monitor:需要监视的量,如’val_loss’, ‘val_acc’, ‘acc’, ‘loss’。

patience:能够容忍多少个epoch内都没有improvement。

verbose:信息展示模式

mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值停止下降则中止训练。在max模式下,当检测值不再上升则停止训练。例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推。

你可能感兴趣的:(模型搭建,keras)