iOS内存管理(二)alloc、retain、release、dealloc

iOS内存管理(一)、内存分区和引用计数
iOS内存管理(二)alloc、retain、release、dealloc

一. alloc源码分析

+ (id)alloc {
    return _objc_rootAlloc(self);
}

id _objc_rootAlloc(Class cls)
{
    return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}

static ALWAYS_INLINE id callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
    //我们是OC2,所以会进入这里
    //关于slowpath和fastpath在下方会有解释,大致意思就是告诉编译器,
    //slowpath这里执行可能更小,而fastpath执行可能更大
    if (slowpath(checkNil && !cls)) return nil;
    if (fastpath(!cls->ISA()->hasCustomAWZ())) {
        //再调用_objc_rootAllocWithZone方法去实际的分配内存
        return _objc_rootAllocWithZone(cls, nil);
    }
#endif

    // No shortcuts available.
    if (allocWithZone) {
        return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
    }
    return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}

NEVER_INLINE id _objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)
{
    // allocWithZone under __OBJC2__ ignores the zone parameter
    return _class_createInstanceFromZone(cls, 0, nil,
                                         OBJECT_CONSTRUCT_CALL_BADALLOC);
}

//实际创建对象分配内存的方法
static ALWAYS_INLINE id _class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
                              int construct_flags = OBJECT_CONSTRUCT_NONE,
                              bool cxxConstruct = true,
                              size_t *outAllocatedSize = nil)
{
    ASSERT(cls->isRealized());

    // Read class's info bits all at once for performance
    bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
    bool hasCxxDtor = cls->hasCxxDtor();
    bool fast = cls->canAllocNonpointer();
    size_t size;

    //确定应该分配的内存
    size = cls->instanceSize(extraBytes);
    if (outAllocatedSize) *outAllocatedSize = size;

    id obj;
    if (zone) {
        //核心:这里开辟内存
        obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
    } else {
        obj = (id)calloc(1, size);
    }
    if (slowpath(!obj)) {
        if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
            return _objc_callBadAllocHandler(cls);
        }
        return nil;
    }

    //初始化isa
    if (!zone && fast) {
        obj->initInstanceIsa(cls, hasCxxDtor);
    } else {
        // Use raw pointer isa on the assumption that they might be
        // doing something weird with the zone or RR.
        obj->initIsa(cls);
    }

    if (fastpath(!hasCxxCtor)) {
        return obj;
    }

    construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
    return object_cxxConstructFromClass(obj, cls, construct_flags);
}

//确定分配内存的大小
size_t instanceSize(size_t extraBytes) const {
        if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
            return cache.fastInstanceSize(extraBytes);
        }

        size_t size = alignedInstanceSize() + extraBytes;
        // CF requires all objects be at least 16 bytes.
        /*
        这里可以看到一个OC对象初始化至少为16个字节
        iOS的指定对齐为8,所以OC对象的内存大小都是8的倍数
        */
        if (size < 16) size = 16;
        return size;
    }

综上所述,我们可以得出如下结论:

  1. + (id)alloc方法调用_objc_rootAlloc方法
  2. _objc_rootAlloc调用callAlloc方法,callAlloc调用_objc_rootAllocWithZone_objc_rootAllocWithZone调用_class_createInstanceFromZone方法,这里实际完成对象的内存开辟
  3. OC对象的内存最小为16个字节(也就是说,一个NSObject对象,至少有16个字节)

__builtin_expect

我们对callAlloc(Class cls, bool checkNil, bool allocWithZone=false)函数中出现的slowpath作出一点说明,我们可以看到slowpath的定义

#define fastpath(x) (__builtin_expect(bool(x), 1))
#define slowpath(x) (__builtin_expect(bool(x), 0))

__builtin这个指令是gcc引入的,作用是允许程序员将最有可能执行的分支告诉编译器。这个指令的写法为:__builtin_expect(EXP, N)
意思是:EXP==N的概率很大。

一般的使用方法是将__builtin_expect指令封装为likelyunlikely宏。这两个宏的写法如下.

#define likely(x) __builtin_expect(!!(x), 1) //x很可能为真       
#define unlikely(x) __builtin_expect(!!(x), 0) //x很可能为假

内核中的 likely()unlikely(),首先要明确:

if(likely(value))  //等价于 if(value)
if(unlikely(value))  //也等价于 if(value)

__builtin_expect()GCC (version >= 2.96)提供给程序员使用的,目的是将“分支转移”的信息提供给编译器,这样编译器可以对代码进行优化,以减少指令跳转带来的性能下降。
__builtin_expect((x),1)表示 x 的值为真的可能性更大;
__builtin_expect((x),0)表示 x 的值为假的可能性更大。
也就是说,使用likely(),执行 if 后面的语句的机会更大,使用 unlikely(),执行 else 后面的语句的机会更大。通过这种方式,编译器在编译过程中,会将可能性更大的代码紧跟着前面的代码,从而减少指令跳转带来的性能上的下降。

isa的初始化

我们再看看isa的初始化

inline void 
objc_object::initIsa(Class cls)
{
    initIsa(cls, false, false);
}
inline void 
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor) 
{ 
    ASSERT(!isTaggedPointer()); 
    
    if (!nonpointer) {
        isa = isa_t((uintptr_t)cls);
    } else {
        ASSERT(!DisableNonpointerIsa);
        ASSERT(!cls->instancesRequireRawIsa());

        isa_t newisa(0);

#if SUPPORT_INDEXED_ISA
        ASSERT(cls->classArrayIndex() > 0);
        newisa.bits = ISA_INDEX_MAGIC_VALUE;
        // isa.magic is part of ISA_MAGIC_VALUE
        // isa.nonpointer is part of ISA_MAGIC_VALUE
        newisa.has_cxx_dtor = hasCxxDtor;
        newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
        newisa.bits = ISA_MAGIC_VALUE;
        // isa.magic is part of ISA_MAGIC_VALUE
        // isa.nonpointer is part of ISA_MAGIC_VALUE
        newisa.has_cxx_dtor = hasCxxDtor;
        newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
        isa = newisa;
    }
}

isa的初始化是在_class_createInstanceFromZone中,在完成对象内存的分配后,对isa进行初始化,而且从上面可以看出,isa初始化的时候,并没有存储1个引用计数,这就是为什么之前retainCount的源码中从数据中取出引用计数要加1的原因了

init的源码简介

+ (id)init {
    return (id)self;
}

- (id)init {
    return _objc_rootInit(self);
}

id _objc_rootInit(id obj)
{
    return obj;
}

从源码中可以看到,无论是哪种形式的init初始化,都是直接返回自身,并没有进行任何的操作

new的源码

我们再来看看new的源码

+ (id)new {
    return [callAlloc(self, false/*checkNil*/) init];
}

可以看出,new实际上也是先调用callAlloc完成内存分配,然后再调用init,所以它等同于alloc+init的调用

二. retain源码分析

//类方法的retain直接返回自身
+ (id)retain {
    return (id)self;
}

//实例方法的retain
- (id)retain {
    return _objc_rootRetain(self);
}

NEVER_INLINE id
_objc_rootRetain(id obj)
{
    ASSERT(obj);

    return obj->rootRetain();
}
ALWAYS_INLINE id 
objc_object::rootRetain()
{
    return rootRetain(false, false);
}

#define RC_ONE   (1ULL<<56)
#define RC_HALF  (1ULL<<7)
ALWAYS_INLINE id 
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
    if (isTaggedPointer()) return (id)this;

    bool sideTableLocked = false;
    bool transcribeToSideTable = false;

    isa_t oldisa;
    isa_t newisa;

    do {
        transcribeToSideTable = false;
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (rawISA()->isMetaClass()) return (id)this;
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
            else return sidetable_retain();
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        if (slowpath(tryRetain && newisa.deallocating)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            return nil;
        }
        uintptr_t carry;
        //extra_rc中加1,carry判断是否溢出,RC_ONE是(1ULL<<56),正好是extra_rc的低位
        //从这里我们也可以看出,extra-rc最多能存储8位的引用计数值,也就是最多(2^8-1 = 255)位引用计数
        newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc++

        //如果上溢出
        if (slowpath(carry)) {
            // newisa.extra_rc++ overflowed
            if (!handleOverflow) {
                ClearExclusive(&isa.bits);
                return rootRetain_overflow(tryRetain);
            }
            // Leave half of the retain counts inline and 
            // prepare to copy the other half to the side table.
            if (!tryRetain && !sideTableLocked) sidetable_lock();
            sideTableLocked = true;
            transcribeToSideTable = true;
            //如果上溢出,那么把一半(2^7=128)留在extra_rc中,还有一半(2^7=128)存到sidetable中
            newisa.extra_rc = RC_HALF;
            //把有sidetable的标志位置为true
            newisa.has_sidetable_rc = true;
        }
        //判断存储是否完整
    } while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));

    if (slowpath(transcribeToSideTable)) {
        // Copy the other half of the retain counts to the side table.
        //将一半(2^7=128)存到sidetable中
        sidetable_addExtraRC_nolock(RC_HALF);
    }

    if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
    return (id)this;
}

bool 
objc_object::sidetable_addExtraRC_nolock(size_t delta_rc)
{
    ASSERT(isa.nonpointer);
    SideTable& table = SideTables()[this];

    size_t& refcntStorage = table.refcnts[this];
    //先取出之前存储的引用计数值
    size_t oldRefcnt = refcntStorage;
    // isa-side bits should not be set here
    ASSERT((oldRefcnt & SIDE_TABLE_DEALLOCATING) == 0);
    ASSERT((oldRefcnt & SIDE_TABLE_WEAKLY_REFERENCED) == 0);

    if (oldRefcnt & SIDE_TABLE_RC_PINNED) return true;

    uintptr_t carry;
    //将旧值和新追加的值相加
    size_t newRefcnt = 
        addc(oldRefcnt, delta_rc << SIDE_TABLE_RC_SHIFT, 0, &carry);
    if (carry) {
        refcntStorage =
            SIDE_TABLE_RC_PINNED | (oldRefcnt & SIDE_TABLE_FLAG_MASK);
        return true;
    }
    else {
        refcntStorage = newRefcnt;
        return false;
    }
}

如源码中所见,我们可以得出如下结论:

  1. 类方法的retain直接返回自身
  2. taggedpointer对象的retain直接返回自身
  3. 实例方法的retain调用步骤为:- (id)retain->_objc_rootRetain(self)->objc_object::rootRetain()->objc_object::rootRetain(false, false),关于引用计数的存储操作在objc_object::rootRetain中实现
  4. isa中最多存储(2^8-1 = 255)个引用计数值

引用计数的存储步骤:

  1. 首先取出isa_t.bits,和RC_ONE(就是1)相加,如果没有上溢出,返回
  2. 如果发生了上溢出,则将isa中的引用计数值拿出一半(RC_HALF = 2^7 = 128)存储到sidetable中,一半留在isa中存储,并将isa位域中的has_sidetable_rc位置为true

三. release源码分析

//类方法的release什么也不做
+ (oneway void)release {
}
//实例方法中调用_objc_rootRelease
- (oneway void)release {
    _objc_rootRelease(self);
}

NEVER_INLINE void _objc_rootRelease(id obj)
{
    //判空
    ASSERT(obj);

    obj->rootRelease();
}

ALWAYS_INLINE bool objc_object::rootRelease()
{
    return rootRelease(true, false);
}

ALWAYS_INLINE bool 
objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
{
    //TaggedPointer直接返回
    if (isTaggedPointer()) return false;

    bool sideTableLocked = false;

    isa_t oldisa;
    isa_t newisa;

 retry:
    do {
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (rawISA()->isMetaClass()) return false;
            if (sideTableLocked) sidetable_unlock();
            return sidetable_release(performDealloc);
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        uintptr_t carry;
        //将extra_rc减一
        newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc--
        //发现下溢出,跳转underflow
        if (slowpath(carry)) {
            // don't ClearExclusive()
            goto underflow;
        }
    } while (slowpath(!StoreReleaseExclusive(&isa.bits, 
                                             oldisa.bits, newisa.bits)));

    if (slowpath(sideTableLocked)) sidetable_unlock();
    return false;

 underflow:
    // newisa.extra_rc-- underflowed: borrow from side table or deallocate

    // abandon newisa to undo the decrement
    newisa = oldisa;

    //如果sidetable存在
    if (slowpath(newisa.has_sidetable_rc)) {
        if (!handleUnderflow) {
            ClearExclusive(&isa.bits);
            return rootRelease_underflow(performDealloc);
        }

        // Transfer retain count from side table to inline storage.

        if (!sideTableLocked) {
            ClearExclusive(&isa.bits);
            sidetable_lock();
            sideTableLocked = true;
            // Need to start over to avoid a race against 
            // the nonpointer -> raw pointer transition.
            goto retry;
        }

        // Try to remove some retain counts from the side table.
        //从sidetable中借一半(2^7=128),用于之后放到extra_rc中
        size_t borrowed = sidetable_subExtraRC_nolock(RC_HALF);

        // To avoid races, has_sidetable_rc must remain set 
        // even if the side table count is now zero.

        if (borrowed > 0) {
            // Side table retain count decreased.
            // Try to add them to the inline count.
            //将一半减去1,然后存到isa的extra_rc中
            newisa.extra_rc = borrowed - 1;  // redo the original decrement too
            bool stored = StoreReleaseExclusive(&isa.bits, 
                                                oldisa.bits, newisa.bits);
            if (!stored) {
                // Inline update failed. 
                // Try it again right now. This prevents livelock on LL/SC 
                // architectures where the side table access itself may have 
                // dropped the reservation.
                isa_t oldisa2 = LoadExclusive(&isa.bits);
                isa_t newisa2 = oldisa2;
                if (newisa2.nonpointer) {
                    uintptr_t overflow;
                    newisa2.bits = 
                        addc(newisa2.bits, RC_ONE * (borrowed-1), 0, &overflow);
                    if (!overflow) {
                        stored = StoreReleaseExclusive(&isa.bits, oldisa2.bits, 
                                                       newisa2.bits);
                    }
                }
            }

            if (!stored) {
                // Inline update failed.
                // Put the retains back in the side table.
                sidetable_addExtraRC_nolock(borrowed);
                goto retry;
            }

            // Decrement successful after borrowing from side table.
            // This decrement cannot be the deallocating decrement - the side 
            // table lock and has_sidetable_rc bit ensure that if everyone 
            // else tried to -release while we worked, the last one would block.
            sidetable_unlock();
            return false;
        }
        else {
            // Side table is empty after all. Fall-through to the dealloc path.
        }
    }

    // Really deallocate.

    //判断是否正在析构
    if (slowpath(newisa.deallocating)) {
        ClearExclusive(&isa.bits);
        if (sideTableLocked) sidetable_unlock();
        //正在析构,返回一个错误
        return overrelease_error();
        // does not actually return
    }
    //extra_rc产生了下溢出,而没有sidetable,引用计数为0了,就该析构了
    //将析构的标记置为true
    newisa.deallocating = true;
    if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;

    if (slowpath(sideTableLocked)) sidetable_unlock();

    __c11_atomic_thread_fence(__ATOMIC_ACQUIRE);

    //调用的时候performDealloc传过来就是true
    if (performDealloc) {
        //主动调起析构函数dealloc
        ((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(dealloc));
    }
    return true;
}

release的源码我们可以得出如下结构

  1. 类方法的release什么也没做
  2. taggedpointer对象的release直接返回自身
  3. 实例方法的release调用步骤为:- (oneway void)release->_objc_rootRelease(self)->objc_object::rootRelease()->objc_object::rootRelease(true, false)

objc_object::rootRelease函数中操作步骤:

  1. 首先在retry标签中对isa中的extra_rc减一,如果没有下溢出,返回
  2. 如果发生了下溢出(即extra_rc之前为0,减去1之后为-1),则跳转到underflow标签中
  3. underflow标签中先根据has_sidetable_rc判断是否有散列表,如果有散列表则在散列表中取出RC_HALF(2^7=128)减去1,再存入isa的extra_rc中,如果散列表有是空的,则跳到第4步
  4. 如果没有散列表,或者散列表中存储的引用计数为0,则将isa的deallocating析构中标志标记为true,接着发送消息调用析构方法dealloc

问题:为什么每次都RC_HALF的取出呢?
答:(1)128个,则不用每次调用哈希算法,频繁操作散列表;(2)1<<7正好是一个字节的长度,存取方便(刚好占用一条数据总线)

四. dealloc源码分析

//类方法什么也不做
+ (void)dealloc {
}
//实例方法调用_objc_rootDealloc
- (void)dealloc {
    _objc_rootDealloc(self);
}

void _objc_rootDealloc(id obj)
{
    ASSERT(obj);

    obj->rootDealloc();
}

inline void
objc_object::rootDealloc()
{
    if (isTaggedPointer()) return;  // fixme necessary?

    //如果不是优化后的isa,而且没有被弱引用,没有关联对象,没有C++的析构函数,并且没有sidetable,直接释放
    if (fastpath(isa.nonpointer  &&  
                 !isa.weakly_referenced  &&  
                 !isa.has_assoc  &&  
                 !isa.has_cxx_dtor  &&  
                 !isa.has_sidetable_rc))
    {
        assert(!sidetable_present());
        free(this);
    } 
    else {
        //否则调用object_dispose
        object_dispose((id)this);
    }
}

id object_dispose(id obj)
{
    if (!obj) return nil;
    //先调用objc_destructInstance析构所有的成员
    objc_destructInstance(obj);    
    //再释放自身
    free(obj);

    return nil;
}

void *objc_destructInstance(id obj) 
{
    if (obj) {
        // Read all of the flags at once for performance.
        bool cxx = obj->hasCxxDtor();
        bool assoc = obj->hasAssociatedObjects();

        // This order is important.
        //有C++的析构函数,调用
        if (cxx) object_cxxDestruct(obj);
        //移除关联对象
        if (assoc) _object_remove_assocations(obj);
        //移除weak
        obj->clearDeallocating();
    }

    return obj;
}

//移除对象的关联对象
void _object_remove_assocations(id object)
{
    //关联哈希表
    ObjectAssociationMap refs{};

    {
        AssociationsManager manager;
        AssociationsHashMap &associations(manager.get());
        AssociationsHashMap::iterator i = associations.find((objc_object *)object);
        if (i != associations.end()) {
            refs.swap(i->second);
            associations.erase(i);
        }
    }

    // release everything (outside of the lock).
    for (auto &i: refs) {
        i.second.releaseHeldValue();
    }
}

//移除weak
inline void objc_object::clearDeallocating()
{
    sidetable_clearDeallocating();
}

//移除sidetable中的weak
void objc_object::sidetable_clearDeallocating()
{
    SideTable& table = SideTables()[this];

    // clear any weak table items
    // clear extra retain count and deallocating bit
    // (fixme warn or abort if extra retain count == 0 ?)
    table.lock();
    RefcountMap::iterator it = table.refcnts.find(this);
    if (it != table.refcnts.end()) {
        if (it->second & SIDE_TABLE_WEAKLY_REFERENCED) {
        //找到到调用weak_clear_no_lock移除weak_table中的weak
            weak_clear_no_lock(&table.weak_table, (id)this);
        }
        table.refcnts.erase(it);
    }
    table.unlock();
}

void weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
{
    objc_object *referent = (objc_object *)referent_id;

    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
        /// XXX shouldn't happen, but does with mismatched CF/objc
        //printf("XXX no entry for clear deallocating %p\n", referent);
        return;
    }

    // zero out references
    weak_referrer_t *referrers;
    size_t count;
    
    if (entry->out_of_line()) {
        referrers = entry->referrers;
        count = TABLE_SIZE(entry);
    } 
    else {
        referrers = entry->inline_referrers;
        count = WEAK_INLINE_COUNT;
    }
    
    for (size_t i = 0; i < count; ++i) {
        objc_object **referrer = referrers[i];
        if (referrer) {
            if (*referrer == referent) {
                *referrer = nil;
            }
            else if (*referrer) {
                _objc_inform("__weak variable at %p holds %p instead of %p. "
                             "This is probably incorrect use of "
                             "objc_storeWeak() and objc_loadWeak(). "
                             "Break on objc_weak_error to debug.\n", 
                             referrer, (void*)*referrer, (void*)referent);
                objc_weak_error();
            }
        }
    }
    
    weak_entry_remove(weak_table, entry);
}

如源码中可见,我们可以得出如下结论:

  1. 类方法的dealloc什么也不做
  2. 实例方法的dealloc调用步骤为:dealloc->_objc_rootDealloc->objc_object::rootDealloc()
  3. objc_object::rootDealloc()方法中,如果不是优化后的isa指针(nonpointer为0),而且没有被弱引用过,且没有关联对象,没有C++的析构函数,并且没有has_sidetable_rc为0,直接调用free释放对象,否则调用object_dispose
  4. object_dispose中,首先调用objc_destructInstance(obj)析构所有成员,然后再调用free释放对象

objc_destructInstance(obj)的调用步骤:

  1. 如果有C++的析构函数,调用object_cxxDestruct(obj)
  2. 如果有关联对象,移除:_object_remove_assocations(obj)
  3. 调用obj->clearDeallocating()移除weak弱引用

综上所述,其实dealloc就是先析构所有的成员(包括关联对象、弱引用、C++析构方法),然后直接调用free释放对象

你可能感兴趣的:(iOS内存管理(二)alloc、retain、release、dealloc)