kafka avro序列化读写消息

kafka avro序列化读写消息

avro是Hadoop的一个子项目,由Hadoop的创始人Doug Cutting领导开发的一种数据序列化系统。avro具有支持二进制的序列化方式具有丰富的数据结构,可以持久化数据,快速的处理大量数据等优点。kafka与avro的结合能更高效的处理大数据。

在使用avro之前,我们需要提前定义好Schema信息(Json格式),在本案例中,我们定义了一个用户行为对象,使用的数据来自阿里云天池公开数据集 :经过脱敏处理的淘宝用户数据,包括用户id、商品id、商品类别id、用户行为、时间戳。
kafka avro序列化读写消息_第1张图片

创建Schema信息

{
    "namespace": "kafka.bean.UserBehavior",
    "type": "record",
    "name": "Stock",
    "fields": [
        {"name": "userId", "type": "long"},
        {"name": "itemId",  "type": "long"},
        {"name": "categoryId", "type": "long"},
        {"name": "behavior", "type": "string"},
        {"name": "timestamp", "type": "long"}
    ]
}

使用到的pom


        
            org.apache.avro
            avro
            1.8.2
        

        
        
            com.twitter
            bijection-core_2.11
            0.9.6
        

        
        
            com.twitter
            bijection-avro_2.11
            0.9.6
        

定义一个用户行为类

case class UserBehavior(userId: Long,
                        itemId: Long,
                        categoryId: Long,
                        behavior: String,
                        timestamp: Long)
  extends Serializable {

}

object UserBehavior {

  def apply(usrArray: Array[String]): UserBehavior = new UserBehavior(
    usrArray(0).toLong, usrArray(1).toLong, usrArray(2).toLong, usrArray(3), usrArray(4).toLong
  )

kafka生产者

import java.io.File
import java.util.Properties
import com.twitter.bijection.Injection
import com.twitter.bijection.avro.GenericAvroCodecs
import kafka.bean.UserBehavior
import org.apache.avro.Schema
import org.apache.kafka.clients.producer.KafkaProducer
import org.apache.avro.generic.GenericRecord
import org.apache.avro.generic.GenericData
import org.apache.kafka.clients.producer.ProducerRecord

import scala.collection.immutable

/**
  * Created by WZZC on 2019/1/13
  **/
object AvroSerializerProducerTest {

  def main(args: Array[String]): Unit = {

    // Avro Schema解析
    val schema: Schema = new Schema.Parser().parse(new File("src/Customer.avsc"))

    val recordInjection: Injection[GenericRecord, Array[Byte]] = GenericAvroCodecs.toBinary(schema)

    // 用户数据
    val source = scala.io.Source.fromURL(this.getClass.getResource("/UserBehavior.csv"))
    // 数据解析为User对象
    val data: immutable.Seq[UserBehavior] = source.getLines().toList.map(_.split(","))
      .filter(_.length >= 5)
      .map(arr => UserBehavior(arr))

    // kafka配置参数
    val props = new Properties()
    props.put("bootstrap.servers", "localhost:9092")
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer")

  //创建一个kafka生产者
    val producer: KafkaProducer[String, Array[Byte]] = new KafkaProducer(props)

  //将用户数据写入kafka 
  data.foreach(user => {
      val avroRecord: GenericData.Record = new GenericData.Record(schema)
      avroRecord.put("userId", user.userId)
      avroRecord.put("itemId", user.itemId)
      avroRecord.put("categoryId", user.categoryId)
      avroRecord.put("behavior", user.behavior)
      avroRecord.put("timestamp", user.timestamp)
      val bytes = recordInjection.apply(avroRecord)
      try {
        val record = new ProducerRecord[String, Array[Byte]]("user", bytes)
        producer.send(record).get()
        println(user.toString)
      } catch {
        case e: Exception => e.printStackTrace()
      }
    })

    producer.close()

  }

}

##################################################################

Kafka消费者

import java.io.File
import java.util.{Collections, Properties}

import com.twitter.bijection.Injection
import com.twitter.bijection.avro.GenericAvroCodecs
import org.apache.avro.Schema
import org.apache.avro.generic.GenericRecord
import org.apache.kafka.clients.consumer.KafkaConsumer
import scala.collection.JavaConversions._
import org.apache.kafka.clients.consumer.ConsumerRecords

import scala.util.Random

/**
  * Created by WZZC on 2018/01/14
  **/
object kafkaConsume {

  def main(args: Array[String]): Unit = {

    val props = new Properties()
    props.put("bootstrap.servers", "localhost:9092")
    props.put("group.id", "G3") // 消费组ID
    props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer")

    // 创建kafka消费者
    val consumer = new KafkaConsumer[String, Array[Byte]](props)

    // 订阅主题 subscribe() 方法接受一个主题列表作为参数
    // consumer.subscribe("user.*")  也可以使用正则表达式 订阅相关主题
    consumer.subscribe(Collections.singletonList("user"))

    // Avro Schema
    val schema: Schema = new Schema.Parser().parse(new File("src/Customer.avsc"))

    val recordInjection: Injection[GenericRecord, Array[Byte]] = GenericAvroCodecs.toBinary(schema)
 
    try {
      while (true) {
        val consumerRecords: ConsumerRecords[String, Array[Byte]] = consumer.poll(100) //如果没有数据到consumer buffer 阻塞多久

        for (record <- consumerRecords) {

          //  每条记录都包含了记录所属主题的信息、记录所在分区的信息、记录在分区里的偏移量,以及记录的键值对
          val genericRecord: GenericRecord = recordInjection.invert(record.value()).get

          println(genericRecord.get("userId") + "\t" +
            genericRecord.get("itemId") + "\t" +
            genericRecord.get("categoryId") + "\t" +
            genericRecord.get("behavior") + "\t" +
            genericRecord.get("timestamp") + "\t")

        }

      }
      // 同步提交 :在broker对提交请求做出回应之前,应用会一直阻塞
      // 处理完当前批次的消息,在轮询更多的消息之前,
      // 调用 commitSync() 方法提交当前批次最新的偏移量
      consumer.commitAsync()
    } catch {
      case e: Exception => println("Unexpected error", e)
    }
    finally {
      // 异步提交:在成功提交或碰到无法恢复的错误之前,commitSync() 会一直重试,但是commitAsync() 不会
      try {
        consumer.commitSync()
      } finally {
        consumer.close()
      }
    }
  }
}

启动kafka生产者和消费者

查看打印的消费信息
kafka avro序列化读写消息_第2张图片

参考资料

Kafka权威指南
https://www.iteblog.com/archives/2236.html
https://www.iteblog.com/archives/1008.html

你可能感兴趣的:(大数据,大数据,kafka)