C#写了一款上位机监控软件,基于MODBUS_RTU协议。 软件的基本结构:
串口接收问题
这里采用的是MODBUS_RTU协议,是没有回车等明显的结束符的哈。所以在C#也不可以用serialPort1.ReadLine来读取。我用的是serialPort1.BytesToRead先读缓冲区中的数据个数,再通过个数据读数据。这样在用串口软件测试的时候确实很有用,再随之问题又出现了。下位机传上来的数据长度高出8个,就会分断接收。即接收到的两次的长度,第一次是8个,然后再接收到后面的。 原因是因为软件没有接收完一整帧数据后就进行了中断。解决方法:在中断中加入线程阻塞方法,然后再读取串口中的数据。
发送读数据和发送写数据的结构
写了多个MODBUS协议的上位机后,总结了些经验,并将这部分程序封装在一个类中。
使用时只需对其接口函数调用即可,有很强的移植性。在写软件时不用再在协议这部分花太多的时间。
基本的使用方法在注释中。程序总体感觉 可能过于臃肿,希望各位大神批评指点。
以下是源代码:
/*
* MODBUS协议
*
*
* 介绍:
* 此modbus上位机 协议类 具有较强的通用性
* 本协议类最主要的思想是 把所有向下位机发送的指令 先存放在缓冲区中(命名为管道)
* 再将管道中的指令逐个发送出去。
* 管道遵守FIFO的模式。管道中所存放指令的个数 在全局变量中定义。
* 管道内主要分为两部分:1,定时循环发送指令。2,一次性发送指令。
* 定时循环发送指令:周期性间隔时间发送指令,一般针对“输入寄存器”或“输入线圈”等实时更新的变量。
* 这两部分的长度由用户所添加指令个数决定(所以自由性强)。
* 指令的最大发送次数,及管道中最大存放指令的个数在常量定义中 可进行设定。
*
* 使用说明:
* 1,首先对所定义的寄存器或线圈进行分组定义,并定义首地址。
* 2,在MBDataTable数组中添加寄存器或线圈所对应的地址。 注意 寄存器:ob = new UInt16()。线圈:ob = new byte()。
* 3,对所定义的地址 用属性进行定义 以方便在类外进行访问及了解所对应地址的含义。
* 4,GetAddressValueLength函数中 对使用说明的"第一步"分组 的元素个数进行指定。
* 5,在主程序中调用MBConfig进行协议初始化(初始化内容参考函数)。
* 6,在串口中断函数中调用MBDataReceive()。
* 7,定时器调用MBRefresh()。(10ms以下)
* 指令发送间隔时间等于实时器乘以10。 例:定时器5ms调用一次 指令发送间隔为50ms。
* 8,在主程序初始化中添加固定实时发送的指令操作 用MBAddRepeatCmd函数。
* 9,在主程序运行过程中 根据需要添加 单个的指令操作(非固定重复发送的指令)用MBAddCmd函数。
*
*
* 作者:王宏强
* 时间:2012.7.2
*
*
*
*
*
*
*/
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO.Ports;
namespace WindowsApplication1
{
public class Modbus
{
#region 所用结构体
///
/// 地址对应表元素单元
///
public struct OPTable{
public volatile int addr;
public volatile byte type;
public volatile object ob;
};
///
/// 当前的指令
///
public struct MBCmd
{
public volatile int addr; //指令首地址
public volatile int stat; //功能码
public volatile int len; //所操作的寄存器或线圈的个数
public volatile int res; //返回码的状态, 0:无返回,1:正确返回
};
///
/// 当前操作的指令管道
///
public struct MBSci
{
public volatile MBCmd[] cmd; //指令结构体
public volatile int index; //当前索引
public volatile int count; //当前功能码执行的次数
public volatile int maxRepeatCount; //最大发送次数
public volatile int rtCount; //实时读取的指令各数(无限间隔时间读取)
};
#endregion
#region 常量定义
public const byte MB_READ_COILS = 0x01; //读线圈寄存器
public const byte MB_READ_DISCRETE = 0x02; //读离散输入寄存器
public const byte MB_READ_HOLD_REG = 0x03; //读保持寄存器
public const byte MB_READ_INPUT_REG = 0x04; //读输入寄存器
public const byte MB_WRITE_SINGLE_COIL = 0x05; //写单个线圈
public const byte MB_WRITE_SINGLE_REG = 0x06; //写单寄存器
public const byte MB_WRITE_MULTIPLE_COILS = 0x0f; //写多线圈
public const byte MB_WRITE_MULTIPLE_REGS = 0x10; //写多寄存器
private const int MB_MAX_LENGTH = 120; //最大数据长度
private const int MB_SCI_MAX_COUNT = 15; //指令管道最大存放的指令各数
private const int MB_MAX_REPEAT_COUNT = 3; //指令最多发送次数
#endregion
#region 全局变量
private static volatile bool sciLock = false; //调度器锁 true:加锁 false:解锁
private static volatile byte[] buff = new byte[MB_MAX_LENGTH]; //接收缓冲器
private static volatile int buffLen = 0;
private static volatile byte[] rBuff = null; //正确接收缓冲器
private static volatile byte[] wBuff = null; //正确发送缓冲器
public static MBSci gMBSci = new MBSci() { cmd = new MBCmd[MB_SCI_MAX_COUNT], index = 0, maxRepeatCount = MB_MAX_REPEAT_COUNT, rtCount = 0, count = 0 };
private static SerialPort comm = null;
private static int mbRefreshTime = 0;
#endregion
#region MODBUS 地址对应表
//modbus寄存器和线圈分组 首地址定义
public const int D_DIO = 0x0000;
public const int D_BASE = 0x0014;
public const int D_RANGE = 0x0018;
public const int D_PWM = 0x001A;
public const int D_PID = 0x001E;
///
/// 变量所对应的地址 在此位置
///
public static volatile OPTable[] MBDataTable =
{
new OPTable(){addr = D_DIO, type = MB_READ_INPUT_REG, ob = new UInt16()}, //0
new OPTable(){addr = D_DIO + 1, type = MB_READ_INPUT_REG, ob = new UInt16()},
new OPTable(){addr = D_DIO + 2, type = MB_READ_INPUT_REG, ob = new UInt16()},
new OPTable(){addr = D_DIO + 3, type = MB_READ_INPUT_REG, ob = new UInt16()},
new OPTable(){addr = D_DIO + 4, type = MB_READ_INPUT_REG, ob = new Int16()},
new OPTable(){addr = D_DIO + 5, type = MB_READ_INPUT_REG, ob = new Int16()},
new OPTable(){addr = D_BASE, type = MB_READ_HOLD_REG, ob = new Int16()}, //6
new OPTable(){addr = D_BASE + 1, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_BASE + 2, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_BASE + 3, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_RANGE, type = MB_READ_HOLD_REG, ob = new Int16()}, //10
new OPTable(){addr = D_RANGE + 1, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_PWM, type = MB_READ_HOLD_REG, ob = new Int16()}, //12
new OPTable(){addr = D_PWM + 1, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_PWM + 2, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_PWM + 3, type = MB_READ_HOLD_REG, ob = new Int16()},
new OPTable(){addr = D_PID, type = MB_READ_HOLD_REG, ob = new UInt16()}, //16
new OPTable(){addr = D_PID + 1, type = MB_READ_HOLD_REG, ob = new UInt16()},
new OPTable(){addr = D_PID + 2, type = MB_READ_HOLD_REG, ob = new UInt16()},
new OPTable(){addr = D_PID + 3, type = MB_READ_HOLD_REG, ob = new UInt16()},
new OPTable(){addr = D_PID + 4, type = MB_READ_HOLD_REG, ob = new UInt16()},
new OPTable(){addr = D_PID + 5, type = MB_READ_HOLD_REG, ob = new UInt16()},
};
public static UInt16 gDioX { get { return Convert.ToUInt16(MBDataTable[0].ob); } set { MBDataTable[0].ob = value; } }
public static UInt16 gDioY { get { return Convert.ToUInt16(MBDataTable[1].ob); } set { MBDataTable[1].ob = value; } }
public static UInt16 gDioZ { get { return Convert.ToUInt16(MBDataTable[2].ob); } set { MBDataTable[2].ob = value; } }
public static UInt16 gDioD { get { return Convert.ToUInt16(MBDataTable[3].ob); } set { MBDataTable[3].ob = value; } }
public static Int16 gDioXx { get { return (Int16)Convert.ToInt32(MBDataTable[4].ob); } set { MBDataTable[4].ob = value; } }
public static Int16 gDioXy { get { return (Int16)Convert.ToInt32(MBDataTable[5].ob); } set { MBDataTable[5].ob = value; } }
public static Int16 gBaseF1 { get { return (Int16)Convert.ToInt32(MBDataTable[6].ob); } set { MBDataTable[6].ob = value; } }
public static Int16 gBaseF2 { get { return (Int16)Convert.ToInt32(MBDataTable[7].ob); } set { MBDataTable[7].ob = value; } }
public static Int16 gBaseF3 { get { return (Int16)Convert.ToInt32(MBDataTable[8].ob); } set { MBDataTable[8].ob = value; } }
public static Int16 gBaseF4 { get { return (Int16)Convert.ToInt32(MBDataTable[9].ob); } set { MBDataTable[9].ob = value; } }
public static Int16 gRangeMax { get { return (Int16)Convert.ToInt32(MBDataTable[10].ob); } set { MBDataTable[10].ob = value; } }
public static Int16 gRangeMin { get { return (Int16)Convert.ToInt32(MBDataTable[11].ob); } set { MBDataTable[11].ob = value; } }
public static Int16 gPwmF1 { get { return (Int16)Convert.ToInt32(MBDataTable[12].ob); } set { MBDataTable[12].ob = value; } }
public static Int16 gPwmF2 { get { return (Int16)Convert.ToInt32(MBDataTable[13].ob); } set { MBDataTable[13].ob = value; } }
public static Int16 gPwmF3 { get { return (Int16)Convert.ToInt32(MBDataTable[14].ob); } set { MBDataTable[14].ob = value; } }
public static Int16 gPwmF4 { get { return (Int16)Convert.ToInt32(MBDataTable[15].ob); } set { MBDataTable[15].ob = value; } }
public static float gP
{
get
{
int tmp = (Convert.ToInt32(MBDataTable[16].ob) & 0xFFFF) | ((Convert.ToInt32(MBDataTable[17].ob) & 0xFFFF) << 16);
byte[] arr = BitConverter.GetBytes(tmp);
return BitConverter.ToSingle(arr, 0);
}
set
{
byte[] val = BitConverter.GetBytes(value);
MBDataTable[16].ob = BitConverter.ToUInt16(val, 0);
MBDataTable[17].ob = BitConverter.ToUInt16(val, 2);
}
}
public static float gI
{
get
{
int tmp = (Convert.ToInt32(MBDataTable[18].ob) & 0xFFFF) | ((Convert.ToInt32(MBDataTable[19].ob) & 0xFFFF) << 16);
byte[] arr = BitConverter.GetBytes(tmp);
return BitConverter.ToSingle(arr, 0);
}
set
{
byte[] val = BitConverter.GetBytes(value);
MBDataTable[18].ob = BitConverter.ToUInt16(val, 0);
MBDataTable[19].ob = BitConverter.ToUInt16(val, 2);
}
}
public static float gD
{
get
{
int tmp = (Convert.ToInt32(MBDataTable[20].ob) & 0xFFFF) | ((Convert.ToInt32(MBDataTable[21].ob) & 0xFFFF) << 16);
byte[] arr = BitConverter.GetBytes(tmp);
return BitConverter.ToSingle(arr, 0);
}
set
{
byte[] val = BitConverter.GetBytes(value);
MBDataTable[20].ob = BitConverter.ToUInt16(val, 0);
MBDataTable[21].ob = BitConverter.ToUInt16(val, 2);
}
}
public static UInt16 gNode = 100;
public static UInt16 gBaud = 38400;
///
/// 获取寄存器或线圈 分组后的成员各数
///
/// 首地址
///
private static int GetAddressValueLength(int addr)
{
int res = 0;
switch (addr)
{
case D_DIO: res = 6; break;
case D_BASE: res = 4; break;
case D_RANGE: res = 2; break;
case D_PWM: res = 4; break;
case D_PID: res = 6; break;
default: break;
}
return res;
}
///
/// 获取地址所对应的数据
///
/// 地址
/// 类型
///
private static object GetAddressValue(int addr, byte type)
{
switch (type) //功能码类型判断
{
case MB_READ_COILS:
case MB_READ_DISCRETE:
case MB_READ_HOLD_REG:
case MB_READ_INPUT_REG: break;
case MB_WRITE_SINGLE_COIL:
case MB_WRITE_MULTIPLE_COILS: type = MB_READ_DISCRETE; break;
case MB_WRITE_SINGLE_REG:
case MB_WRITE_MULTIPLE_REGS: type = MB_READ_HOLD_REG; break;
default: return null;
}
for (int i = 0; i < MBDataTable.Length; i++)
{
if (MBDataTable[i].addr == addr)
{
if (MBDataTable[i].type == type)
{
return MBDataTable[i].ob;
}
}
}
return null;
}
///
/// 设置地址所对应的数据
///
/// 地址
/// 类型
/// 数据
///
private static object SetAddressValue(int addr, byte type, object data)
{
for (int i = 0; i < MBDataTable.Length; i++)
{
if (MBDataTable[i].addr == addr)
{
if (MBDataTable[i].type == type)
{
MBDataTable[i].ob = data;
return true;
}
}
}
return null;
}
///
/// 获取一连串数据
///
/// 首地址
/// 功能码
/// 长度
///
private static byte[] GetAddressValues(int addr, byte type, int len)
{
byte[] arr = null;
object obj;
byte temp;
int temp2;
switch (type)
{
case MB_WRITE_MULTIPLE_COILS:
arr = new byte[(len % 8 == 0) ? (len / 8) : (len / 8 + 1)];
for (int i = 0; i < arr.Length; i++)
{
for (int j = 0; j < 8; j++)
{ //获取地址所对应的数据 并判断所读数据 是否被指定,有没被指定的数据 直接返回null
obj = GetAddressValue(addr + i * 8 + j, MB_READ_COILS);
if (obj == null)
return null;
else
temp = Convert.ToByte(obj);
arr[i] |= (byte)((temp == 0? 0 : 1) << j);
}
}
break;
case MB_WRITE_MULTIPLE_REGS:
arr = new byte[len * 2];
for (int i = 0; i < len; i++)
{
obj = GetAddressValue(addr + i, MB_READ_HOLD_REG);
if (obj == null)
return null;
else
temp2 = Convert.ToInt32(obj);
arr[i * 2] = (byte)(temp2 >> 8);
arr[i * 2 + 1] = (byte)(temp2 & 0xFF);
}
break;
default: break;
}
return arr;
}
#endregion
#region 校验
private static readonly byte[] aucCRCHi = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40
};
private static readonly byte[] aucCRCLo = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,
0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,
0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
0x41, 0x81, 0x80, 0x40
};
///
/// CRC效验
///
/// 效验数据
/// 数据长度
///
public static int Crc16(byte[] pucFrame, int usLen)
{
int i = 0;
byte ucCRCHi = 0xFF;
byte ucCRCLo = 0xFF;
UInt16 iIndex = 0x0000;
while (usLen-- > 0)
{
iIndex = (UInt16)(ucCRCLo ^ pucFrame[i++]);
ucCRCLo = (byte)(ucCRCHi ^ aucCRCHi[iIndex]);
ucCRCHi = aucCRCLo[iIndex];
}
return (ucCRCHi << 8 | ucCRCLo);
}
#endregion
#region 发送指命操作
///
/// 首部分数据 node:节点
///
/// 寄存器地址
/// 数据长度,或单个数据
///
///
private static byte[] SendTrainHead(int node, int addr, int len, byte stat)
{
byte[] head = new byte[6];
head[0] = Convert.ToByte(node);
head[1] = stat;
head[2] = (byte)(addr >> 8);
head[3] = (byte)(addr & 0xFF);
head[4] = (byte)(len >> 8);
head[5] = (byte)(len & 0xFF);
return head;
}
///
/// 计算数据长度 并在0x0f,0x10功能下 加载字节数
///
///
///
///
///
private static byte[] SendTrainBytes(byte[] arr, ref int len, byte stat)
{
byte[] res;
switch (stat)
{
default: len = 0; break;
case MB_READ_COILS:
case MB_READ_DISCRETE:
case MB_READ_HOLD_REG:
case MB_READ_INPUT_REG:
case MB_WRITE_SINGLE_COIL:
case MB_WRITE_SINGLE_REG:
len = 0;
break;
case MB_WRITE_MULTIPLE_COILS:
len = (len % 8 == 0) ? (len / 8) : (len / 8 + 1);
res = new byte[arr.Length + 1];
arr.CopyTo(res, 0);
res[arr.Length] = (byte)(len);
arr = res;
break;
case MB_WRITE_MULTIPLE_REGS:
len *= 2;
res = new byte[arr.Length + 1];
arr.CopyTo(res, 0);
res[arr.Length] = (byte)len; //把字节写入数据最后位置
arr = res;
break;
}
return arr;
}
///
/// 主控方式 发送指令模板
///
/// 节点
/// 数据
/// 地址
/// 变量各数
/// 功能码
///
private static byte[] SendTrainCyclostyle(int node, byte[] data, int addr, int con, byte stat)
{
int crcVal = 0;
byte[] headData = SendTrainHead(node, addr, con, stat); //写首部分数据
byte[] headDataLen = SendTrainBytes(headData, ref con, stat); //计算数据的长度,有字节则写入。
byte[] res = new byte[headDataLen.Length + con + 2];
headDataLen.CopyTo(res, 0);
if ((stat == MB_WRITE_MULTIPLE_REGS) || (stat == MB_WRITE_MULTIPLE_COILS))
Array.Copy(data, 0, res, headDataLen.Length, con); //把数据复制到数据中
crcVal = Crc16(res, res.Length - 2);
res[res.Length - 2] = (byte)(crcVal & 0xFF);
res[res.Length - 1] = (byte)(crcVal >> 8);
return res;
}
///
/// 封装发送数据帧
///
/// 从机地址
/// 指令信息
///
private static byte[] SendPduPack(int node, MBCmd cmd)
{
byte[] res = null;
switch (cmd.stat)
{
case MB_READ_COILS:
case MB_READ_DISCRETE:
case MB_READ_HOLD_REG:
case MB_READ_INPUT_REG:
case MB_WRITE_SINGLE_COIL:
case MB_WRITE_SINGLE_REG:
res = SendTrainCyclostyle(node, null, cmd.addr, cmd.len, (byte)cmd.stat); break;
case MB_WRITE_MULTIPLE_COILS:
case MB_WRITE_MULTIPLE_REGS:
byte[] data = GetAddressValues(cmd.addr, (byte)cmd.stat, cmd.len);
res = SendTrainCyclostyle(node, data, cmd.addr, cmd.len, (byte)cmd.stat); break;
}
return res;
}
#endregion
#region 回传数据操作
///
/// 存储回传的线圈
///
/// 回传的数组
/// 首地址
///
private static bool ReadDiscrete(byte[] data, int addr)
{
bool res = true;
int len = data[2];
if (len != (data.Length - 5)) //数据长度不正确 直接退出
return false;
for (int i = 0; i < len; i++)
{
for (int j = 0; j < 8; j++)
{
if (SetAddressValue(addr + i * 8 + j, data[1], data[i + 3] & (0x01 << j)) == null)
{
return false;
}
}
}
return res;
}
///
/// 读回传的寄存器
///
/// 回传的数组
/// 首地址
///
private static bool ReadReg(byte[] data, int addr)
{
bool res = true;
int len = data[2];
if (len != (data.Length - 5)) //数据长度不正确 直接退出
return false;
for (int i = 0; i < len; i += 2)
{
if (SetAddressValue(addr + i / 2, data[1], (data[i + 3] << 8) | data[i + 4]) == null)
{
res = false;
break;
}
}
return res;
}
///
/// 回传的数据处理
///
/// 回传的整帧数据
/// 当前所操作的首地址
///
private static bool ReceiveDataProcess(byte[] buff, int addr)
{
if (buff == null)
return false;
if (buff.Length < 5) //回传的数据 地址+功能码+长度+2效验 = 5字节
return false;
bool res = true;
switch (buff[1])
{
case MB_READ_COILS: ReadDiscrete(buff, addr); break;
case MB_READ_DISCRETE: ReadDiscrete(buff, addr); break;
case MB_READ_HOLD_REG: ReadReg(buff, addr); break;
case MB_READ_INPUT_REG: ReadReg(buff, addr); break;
case MB_WRITE_SINGLE_COIL:
case MB_WRITE_SINGLE_REG:
case MB_WRITE_MULTIPLE_COILS:
case MB_WRITE_MULTIPLE_REGS: break;
default: res = false; break;
}
return res;
}
#endregion
#region 收发调度
///
/// 添加重复操作指令
///
/// 待发送的指命管道
/// 所添加指令的首地址
/// 所添加指令的寄存器或线圈个数
/// 所添加指令的功能码
private static void SciAddRepeatCmd(ref MBSci sci, int addr, int len, int stat)
{
if (sci.rtCount >= MB_SCI_MAX_COUNT - 1) //超出指令管道最大长度 直接退出
return;
if (len == 0) //地址的数据长度为空 直接退出
return;
sci.cmd[sci.rtCount].addr = addr;
sci.cmd[sci.rtCount].len = len;
sci.cmd[sci.rtCount].stat = stat;
sci.cmd[sci.rtCount].res = 0;
sci.rtCount++;
}
///
/// 添加一次性操作指令
///
/// 待发送的指命管道
/// 所添加指令的首地址
/// 所添加指令的寄存器或线圈个数
/// 所添加指令的功能码
private static void SciAddCmd(ref MBSci sci, int addr, int len, int stat)
{
if (len == 0) //地址的数据长度为空 直接退出
return;
for (int i = sci.rtCount; i < MB_SCI_MAX_COUNT; i++)
{
if (sci.cmd[i].addr == -1) //把指令载入到空的管道指令上
{
sci.cmd[i].addr = addr;
sci.cmd[i].len = len;
sci.cmd[i].stat = stat;
sci.cmd[i].res = 0;
break;
}
}
}
///
/// 清空重复读取指令集
///
/// 待发送的指命管道
private static void SciClearRepeatCmd(ref MBSci sci)
{
sci.rtCount = 0;
}
///
/// 清空一次性读取指令集
///
/// 待发送的指命管道
private static void SciClearCmd(ref MBSci sci)
{
for (int i = sci.rtCount; i < MB_SCI_MAX_COUNT; i++)
{
sci.cmd[i].addr = -1;
sci.cmd[i].len = 0;
sci.cmd[i].res = 0;
}
}
///
/// 跳到下一个操作指令
///
/// 待发送的指命管道
private static void SciJumbNext(ref MBSci sci)
{
if (sci.index >= sci.rtCount) //非实时读取地址会被清除
{
sci.cmd[sci.index].addr = -1;
sci.cmd[sci.index].len = 0;
sci.cmd[sci.index].stat = 0;
}
do{
sci.index++;
if (sci.index >= MB_SCI_MAX_COUNT) //超出指令最大范围
{
sci.index = 0;
if (sci.rtCount == 0) //如果固定实时读取 为空 直接跳出
break;
}
} while (sci.cmd[sci.index].addr == -1);
sci.cmd[sci.index].res = 0; //本次返回状态清零
}
///
/// 发送指令调度锁定
///
public static void SciSchedulingLock()
{
sciLock = true;
}
///
/// 发送指令调度解锁
///
public static void SciSchedulingUnlock()
{
sciLock = false;
}
///
/// 待发送的指令管道调度
///
/// 待发送的指命管道
/// 收到正确的回传数据
/// 准备发送的指令数据
private static void SciScheduling(ref MBSci sci, ref byte[] rBuf, ref byte[] wBuf)
{
if (sciLock) //如果被加锁 直接退出
return;
if ((sci.cmd[sci.index].res != 0) || (sci.count >= sci.maxRepeatCount))
{
sci.count = 0; //发送次数清零
if (sci.cmd[sci.index].res != 0) //如果收到了正常返回
{
ReceiveDataProcess(rBuf, sci.cmd[sci.index].addr); //保存数据
rBuf = null; //清空当前接收缓冲区的内容, 以防下次重复读取
}
else
{
//参数操作失败
}
SciJumbNext(ref sci);
}
wBuf = SendPduPack((int)gNode, sci.cmd[sci.index]); //发送指令操作
sci.count++; //发送次数加1
}
///
/// 快速刷新 处理接收到的数据 建议:10ms以下
///
///
private static int MBQuickRefresh()
{
int res = -1;
if (rBuff != null)
{
SciSchedulingLock();
if (ReceiveDataProcess(rBuff, gMBSci.cmd[gMBSci.index].addr) == true)
{
gMBSci.cmd[gMBSci.index].res = 1; //标记 所接收到的数据正确
res = gMBSci.cmd[gMBSci.index].stat;
}
rBuff = null;
SciSchedulingUnlock();
}
return res;
}
///
/// 调度间隔时间刷新 建议:50ms以上
///
///
private static void MBSchedRefresh()
{
SciScheduling(ref gMBSci, ref rBuff, ref wBuff);
if (wBuff != null)
comm.Write(wBuff, 0, wBuff.Length);
}
#endregion
#region 接口函数
///
/// 清空存放一次性的指令空间
///
public static void MBClearCmd()
{
SciClearCmd(ref gMBSci);
}
///
/// 添加固定刷新(重复) 操作指令
///
/// 地址
/// 功能码
public static void MBAddRepeatCmd(int addr, byte stat)
{
for (int i = 0; i < GetAddressValueLength(addr); i++ )
if (GetAddressValue(addr, stat) == null) //如果所添加的指令没有在MODBUS对应表中定义 直接退出
return;
SciAddRepeatCmd(ref gMBSci, addr, GetAddressValueLength(addr), stat);
}
///
/// 添加一次性 操作指令
///
///
///
public static void MBAddCmd(int addr, byte stat)
{
for (int i = 0; i < GetAddressValueLength(addr); i++)
if (GetAddressValue(addr, stat) == null) //如果所添加的指令没有在MODBUS对应表中定义 直接退出
return;
SciAddCmd(ref gMBSci, addr, GetAddressValueLength(addr), stat);
}
///
/// 串口参数配置
///
/// 所用到的串口
///
///
public static void MBConfig(SerialPort commx, UInt16 node, UInt16 baud)
{
gBaud = baud;
gNode = node;
comm = commx;
SciClearRepeatCmd(ref gMBSci);
SciClearCmd(ref gMBSci);
}
///
/// 读取串口中接收到的数据
///
/// 所用到的串口
public static void MBDataReceive()
{
if (comm == null) //如果串口没有被初始化直接退出
return;
SciSchedulingLock();
System.Threading.Thread.Sleep(20); //等待缓冲器满
buffLen = comm.BytesToRead; //获取缓冲区字节长度
if (buffLen > MB_MAX_LENGTH) //如果长度超出范围 直接退出
{
SciSchedulingUnlock();
return;
}
comm.Read(buff, 0, buffLen); //读取数据
if (gMBSci.cmd[gMBSci.index].stat == buff[1])
{
if (Crc16(buff, buffLen) == 0)
{
rBuff = new byte[buffLen];
Array.Copy(buff, rBuff, buffLen);
}
}
SciSchedulingUnlock();
}
///
/// MODBUS的实时刷新任务,在定时器在实时调用此函数
/// 指令发送间隔时间等于实时器乘以10。 例:定时器5ms调用一次 指令发送间隔为50ms。
///
///
public static int MBRefresh()
{
if (sciLock) //如果被加锁 直接退出
return 0;
mbRefreshTime++;
if (mbRefreshTime > 10)
{
mbRefreshTime = 0;
MBSchedRefresh();
}
return MBQuickRefresh();
}
#endregion
}
}