- 联邦学习 Federated learning Google I/O‘19 笔记
努力搬砖的星期五
笔记联邦学习机器学习机器学习tensorflow
FederatedLearning:MachineLearningonDecentralizeddatahttps://www.youtube.com/watch?v=89BGjQYA0uE文章目录FederatedLearning:MachineLearningonDecentralizeddata1.DecentralizeddataEdgedevicesGboard:mobilekeyboa
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- 探索联邦学习:保护隐私的机器学习新范式
洋葱蚯蚓
机器学习python机器学习人工智能神经网络深度学习算法
探索联邦学习:保护隐私的机器学习新范式前言联邦学习简介联邦学习的原理联邦学习的应用场景联邦学习示例代码结语前言 在数字化浪潮的推动下,我们步入了一个前所未有的数据驱动时代。海量的数据不仅为科学研究、商业决策和日常生活带来了革命性的变化,同时也带来了前所未有的挑战。尤其是数据隐私和安全问题,已经成为全球关注的焦点。 随着对个人隐私保护意识的增强,传统的集中式数据处理方式正逐渐暴露出其局限性。数据
- 网络安全: 模型的脆弱性,鲁棒性和隐私性
不当菜鸡的程序媛
学习记录web安全安全
在网络安全领域,通常描述模型安全性时,会提到以下三个特性:脆弱性(Vulnerability):指模型在某些情况下容易受到攻击或被利用的弱点。例如,模型可能对对抗性攻击或梯度泄露攻击敏感。鲁棒性(Robustness):指模型抵御攻击和在恶劣环境下保持性能的能力。提高模型的鲁棒性是增强其抵御攻击能力的关键。隐私性(Privacy):指保护模型或其训练数据免受信息泄露的能力。隐私性问题在联邦学习和其
- 实践案例|孟宪超:基于隐语深度学习在保险联合定价中的应用(附演讲视频)
隐私开源
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow演讲实录11月25日,「隐语开源社区Meetup·西安站」顺利举办,本文为大家带来的是蚂蚁集团车险精算平台技术专家孟宪超,在「隐语开源社区Meet
- 【Deep Dive:AI Webinar】联邦学习-数据安金性和隐私性分析的思维转换
开源社
人工智能
【深入探讨人工智能】网络研讨系列总共有17个视频。我们按照视频内容,大致上分成了3个大类:1.人工智能的开放、风险与挑战(4篇)2.人工智能的治理(总共12篇),其中分成了几个子类:a.人工智能的治理框架(3篇)b.人工智能的数据治理(4篇)c.人工智能的许可证(4篇)d.人工智能的法案(1篇)3.炉边对谈-谁在构建开源人工智能?今天发布的是第11个视频,亦即第二个大类别“人工智能的治理”里的第二
- Apache Pulsar 在腾讯 Angel PowerFL 联邦学习平台上的实践
StreamNative
腾讯AngelPowerFL联邦学习平台联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融、医疗、城市安防等领域。腾讯AngelPowerFL联邦学习平台构建在Angel机器学习平台上,利用Angel-PS支持万亿级模型训练的能力,将很多在Worker上的计算提升到PS(参数服务器)端;AngelPowerFL为联邦学习算法提供了计算、加密、存储、状态同步等基本操作接口,
- 联邦学习-安全树模型 SecureBoost之Desicion Tree
秃顶的码农
联邦学习-安全树模型SecureBoost之DesicionTree1联邦学习背景鉴于数据隐私的重要性,国内外对于数据的保护意识逐步加强。2018年欧盟发布了《通用数据保护条例》(GDPR),我国国家互联网信息办公室起草的《数据安全管理办法(征求意见稿)》因此数据在安全合规的前提下自由流动,成了大势所趋。这些法律法规的出台,不同程度的对人工智能传统处理数据的方式提出更多的挑战。AI高度发展的今天,
- 最新论文笔记(+21):Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems/ TIFS2022
cryptocxf
论文笔记联邦学习论文阅读区块链
Privacy-PreservingByzantine-RobustFederatedLearningviaBlockchainSystems可译为“利用区块链实现隐私保护的拜占庭鲁棒性联邦学习”这篇是今年八月份被TIFS2022(CCFA)收录的文章,写的利用全同态加密和区块链技术解决联邦学习中隐私问题和可信问题(虽然区块链仅仅只是存储的作用,也稍微提了一下)。精读完这篇文章,整体感觉还不错,毕
- pysyft框架中WebsocketClientWorker与WebsocketServerWorker的消息传输
一只特立独行的猫
Pysyft学习笔记pytorch
引言pysyft是基于pytorch的一个联邦学习框架(虽然用起来很难受),通过内存管理实现联邦学习的模拟。在pysyft中,WebsocketServerWorker充当数据的提供方(数据存储方),而WebsocketClientWorker作为数据的使用方(指令提供方),通过WebsocketClientWorker以TCP连接的方式向WebsocketServerWorker请求服务,从而实
- 论文解读-Agglomerative Federated Learning: Empowering Larger Model Training
MCRG
联邦学习学习笔记联邦学习云计算边缘计算机器学习分布式
联邦学习新探:端边云协同引领大模型训练的未来|INFOCOM2024联邦学习(FederatedLearning)就是一种能够在不损害用户隐私的前提下,训练人工智能模型的技术。随着云计算、边缘计算和终端设备的发展,端边云协同(End-Edge-CloudCollaboration)计算范式的出现,为联邦学习算法的实施与部署提供了新的路径。由中国科学院计算技术研究所、中国科学院大学、中关村实验室和北
- 2019年3月18日
真昼之月
醒来时状态很一般。地铁上暂时不想看书,就把灌篮高手的漫画带着翻了一阵子。今天的SQB模式也一如既往地没有出货。上午各种刷reddit摸鱼+水群,期间看群里FIFA视频时还被领导路过了电脑,不得不感叹幸好当时不是在看色图(?)因为有点困所以没下楼吃午饭直接睡觉,睡醒之后才下楼买零食充饥。下午看了会儿keras的文档,感觉还是欠缺实战,这一点还是得依赖kaggle?之后开虚拟机打算研究一下联邦学习,结
- 我的隐私计算学习——联邦学习(3)
Atara8088
学习密码学安全人工智能同态加密
本篇笔记主要是根据这位老师的知识分享整理而成【公众号:秃顶的码农】,我从他的资料里学到了很多,期间还私信询问了一些困惑,都得到了老师详细的答复,相当nice!(五)纵向联邦学习—安全树思路可以通过以下脉络学习:决策树--------->集成方法Bagging&Boosting--------->GBDT--------->XGBoost--------->SecureBoostTree这个版块的内
- 我的隐私计算学习——联邦学习(4)
Atara8088
学习密码学安全人工智能
本篇笔记部分内容来源于这位老师的知识分享【公众号:秃顶的码农】,我从他的资料里学到了很多,期间还私信询问了一些困惑,都得到了老师详细的答复,相当nice!(六)横向联邦学习—梯度更新聚合云端数据中心的分布式机器学习可以有成百上千的节点,对比横向联邦学习有一定的借鉴意义,都存在着节点更新的同步与异步的问题,节点梯度更新之后的问题、节点掉线的问题、数据的NonIID问题,但是横向联邦学习的场景更加复杂
- 我的隐私计算学习——联邦学习(5)
Atara8088
学习人工智能密码学安全
笔记内容来自多本书籍、学术资料、白皮书及ChatGPT等工具,经由自己阅读后整理而成。(七)联邦迁移学习相关研究表明,联邦迁移学习不需要主服务器作为各参与方间的协调者,旨在让模型具备举一反三能力,在各参与方样本空间以及特征空间均存在较少交叉信息的情况下,使用迁移学习算法互助地构建模型,可解决标签样本少和数据集不足的问题,例如,某国电商平台与其他国家银行间的数据迁移场景,联邦迁移学习可以很好地解决数
- 全同态加密的硬件加速:让机器学习更懂隐私保护
PrimiHub
同态加密机器学习区块链密码学可信计算技术
PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。问题:保护敏感数据企业机构间合作处理数据越来越频繁,通常使用云服务为数据共享保驾护航。保护数据隐私至关重要,特别是在处理个人可识别信息(PII)、个人健康信息(PHI)、知识产权和情报洞察等敏感数据时。数据有三种基本状态:静态、传输和使用。通常情况下,敏感数据在存储
- 2024年深圳市工业和信息化局软件产业高质量发展技术创新体系扶持计划产业链关键环节提升项目申请指南
高新技术企业认定条件
项目政策大数据
一、资助的项目类别软件企业围绕大数据、云计算、区块链、信息安全、数字孪生等软件产业重点发展方向,组织实施经济社会效益显著、主要性能指标取得突破的新产品应用推广项目。(一)大数据:重点支持数据采集、数据清洗、数据分析发掘、数据可视化、大数据行业应用、联邦学习、隐私计算等领域。(二)云计算:重点支持平台即服务(PaaS)、软件即服务(SaaS)等领域。(三)区块链:重点支持区块链底层平台建设,以及在金
- 联邦学习:密码学 + 机器学习 + 分布式 实现隐私计算,破解医学界数据孤岛的长期难题
Debroon
医学视觉#AI安全#机器学习深度学习
联邦学习:密码学+机器学习+分布式提出背景:数据不出本地,又能合力干大事联邦学习的问题联邦学习架构分布式机器学习:解决大数据量处理的问题横向联邦学习:解决跨多个数据源学习的问题纵向联邦学习:解决数据分散在多个参与者但部分特征重叠的问题联邦+迁移学习:结合联邦学习和迁移学习,不同任务间共享知识,同时保持数据隐私医疗+联邦学习:跨多个医疗机构共享模型学习,同时保护患者隐私大模型+联邦学习提出背景:数据
- 阿里巴巴开源联邦学习框架FederatedScope
魏铁锤爱摸鱼
开源
5月5日,阿里巴巴达摩院发布新型联邦学习框架FederatedScope,声称可以在不共享训练数据的情况下开发机器学习算法,从而保护隐私。,其源代码现已在Apache2.0许可下发布在GitHub上。介绍该平台被描述为一个全面的联邦学习框架,为学术界和工业界的各种机器学习任务提供灵活的定制。它还被声称易于掌握,允许用户集成自己的组件,包括特定应用程序的数据集和模型。联邦学习,顾名思义,是一种跨多个
- 联邦学习框架:FedAdapt: Adaptive Offloading for IoT Devices in Federated Learning 框架的部署实现
我要 成果
边缘计算边缘智能框架联邦学习centos通信协同推理
目录虚拟机的安装简化版(三台)环境配置安装Anaconda创建环境安装pytorch关闭防火墙代码代码下载数据集下载代码修改上传到虚拟机虚拟机测试修改虚拟机的主机名运行FedAdapt是一个全面的物联网边缘环境的框架,克服了加速联合学习资源有限的设备上的挑战,减少散兵游勇所产生的物联网设备的计算异质性和适应不同的设备和边缘服务器之间的网络带宽的影响。虚拟机的安装简化版(三台)三台centos7虚拟
- 联邦学习论文阅读:Federated collaborative filtering
thormas1996
联邦学习联邦学习论文阅读
今年一月刚挂上arXiv的一篇联邦推荐文章Federatedcollaborativefilteringforprivacy-preservingpersonalizedrecommendationsystem。摘要作者将一个隐形反馈的CF模型修改成了联邦学习的框架,隐私性用Fed-Avg算法保证。总的来说,没什么创新。问题在保护用户隐私的情况下利用隐性反馈进行推荐框架一个横向联邦的框架,和goo
- 边缘计算和联邦学习的联系
slomay
边缘计算经验分享
1.什么是边缘计算?边缘计算(EdgeComputing)是一种计算模型,其主要思想是将计算、存储和数据处理能力推送到离数据源近的边缘设备,而不是依赖于远程的云服务器。这样做的目的是减少数据传输延迟、提高响应速度,同时降低对云计算中心的依赖性。边缘计算通常在物理临近设备的位置进行数据处理,以满足实时性、安全性和隐私性的要求。例如:考虑一个城市的智能监控摄像头系统,用于监测交通、公共场所和安全状况。
- 高级分布式系统-第15讲 分布式机器学习--联邦学习
十有久诚
分布式机器学习人工智能高级分布式系统神经网络
联邦学习两种常见的架构:客户-服务器架构和对等网络架构联邦学习在传统的分布式机器学习基础上的变化。传统的分布式机器学习:在数据中心或计算集群中使用并行训练,因为有高速通信连接,所以通信开销相对很小,计算开销将会占主导地位。联邦学习:通信需要依靠互联网,甚至是无线网络,所以通信代价是占主导地位的。减少通信轮次的方法增加并行度:加入更多的参与方,让它们在通信轮次间各自独立地进行模型训练。增加每一个
- 【论文阅读】异构联邦学习综述:最新进展与研究挑战
鸿鹄一夏
论文笔记机器学习人工智能
目录前言Background什么是联邦学习什么是异构联邦学习AbstractIntroductionSurveyResearchChallenges(研究挑战)StatisticalHeterogeneity(数据异质性)ModelHeterogeneity(模型异质性)ComuunicationHeterogeneity(通信异质性)DeviceHeterogeneity(设备异质性)State
- 分裂联邦学习论文-混合联邦分裂学习GAN驱动的预测性多目标优化
梦灯
人工智能论文EdgeAI生成对抗网络人工智能机器学习
论文标题:《PredictiveGAN-PoweredMulti-ObjectiveOptimizationforHybridFederatedSplitLearning》期刊:IEEETransactionsonCommunications,2023一、论文介绍背景:联邦学习作为一种多设备协同训练的边缘智能算法,可以保护数据隐私,但增加了无线设备的计算负担。模型:为了解决上述问题,我们提出了一种
- 使用MistNet在COCO128数据集上协作训练Yolo-v5
星星失眠️
联邦学习YOLOpython人工智能
本案例介绍如何在MNIST手写数字分类场景中,使用名为MistNet的聚合算法训练联邦学习作业。数据分散在不同的地方(如边缘节点、摄像头等),由于数据隐私和带宽的原因,无法在服务器上聚合。因此,我们不能将所有数据都用于训练。在某些情况下,边缘节点的计算资源有限,甚至没有训练能力。边缘无法从训练过程中获取更新的权重。因此,传统算法(例如,联合平均算法)通常聚合由不同边缘客户端训练的更新权重,在这种情
- 迈向可持续人工智能:通过拍卖实现云边缘系统中的联邦学习需求响应
zhy2267291213
人工智能
(原文:TowardSustainableAI:FederatedLearningDemandResponseinCloud-EdgeSystemsviaAuctions)摘要:云边缘系统时紧急需求响应EDR的重要参与者,有助于维持电网稳定和供需平衡。然而,UI这用户越来越多的在云边缘系统中执行人工智能工作负载,现有的ERD管理并不是针对al工作负载而设计的,因此面临着能源消耗和al模型准确性之间
- 联邦学习的联合参与激励和网络定价设计
zhy2267291213
网络机器学习人工智能
(原文:JointParticipationIncentiveandNetworkPricingDesignforFederatedLearning)摘要:由于当大量用户通过联邦学习训练大型机器学习模型时,动态变化且通常繁重的通信开销会给网络运营商带来巨大压力。运营商可能会选择动态改变网络价格作为响应,这最终将影响服务器和用户的收益。本文考虑了参与激励(用于鼓励用户对联邦学习的贡献)和网络定价(用
- 零知识证明的最新发展和应用
PrimiHub
零知识证明区块链密码学可信计算技术同态加密github
PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。当企业收集大量客户数据去审查、改进产品和服务以及将数据资产货币化时,他们容易受到网络攻击威胁,造成数据泄露。数据泄露的损失每年都在上升,每次泄露平均造成损失420万美元,如下图所示,它们严重损害了企业的声誉和可信度。数据泄露的成本零知识证明(ZKPs)等隐私增强技术
- 2024年1月10日最热AI论文Top5:DebugBench、AI智能体对齐、开放域问答系统、谈判游戏、联邦学习
夕小瑶
人工智能计算机视觉自然语言处理大模型chatgpt
本文整理了今日发表在ArXiv上的AI论文中最热门的TOP5。论文热度排序、论文标签、中文标题、推荐理由和论文摘要均由赛博马良平台(saibomaliang.com)上的智能体「AI论文解读达人」提供。如需查看其他热门论文,欢迎移步saibomaliang.com^_^TOP1DebugBench:EvaluatingDebuggingCapabilityofLargeLanguageModels
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo