基于OpenCV实现的RANSAC随机抽样一致性直线拟合

概要

本文介绍基于ransac随机抽样一致性随机抽样一致性的直线拟合方法,涵盖一下的内容。

  • ransac的算法思想
  • ransac的算法步骤
  • 如何调整ransac算法迭代的次数
  • 基于opencv编码实现

ransac算法流程

RANSACRANdomSAmpleConsensusRANdomSAmpleConsensus,即随机采样一致性。该方法最早是由Fischler和Bolles提出的一种鲁棒估计方法,最早用于计算机视觉中位姿估计问题,现在已广泛应用于已知模型的参数估计问题中。对于数据中存在大比例外点(错误数据、野值点)时,RANSAC方法十分有效。其思想比较直观和容易理解,即可从坐标点中随机抽取两点,计算一条直线,然后判断所有的点与该直线的吻合程度,不断重复直到挑选出最好的。

基于OpenCV实现的RANSAC随机抽样一致性直线拟合_第1张图片

采样迭代次数确定

关于迭代多少次比较合适ransac原论文中有介绍,这里直接给出公式

 

其中,N为需要采样的次数&#x

你可能感兴趣的:(OpenCV,opencv,计算机视觉,算法)