- AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估
梦想的初衷~
土壤植被遥感人工智能遥感植被土壤
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- AI Agent从零到精通:深度解析Workflow、Prompt、Multi-Agent Systems和RL Training
爱看烟花的码农
AIGCNLP人工智能prompt
1.AI智能体简介:从概念到应用1.1什么是AI智能体?AI智能体是一种自主智能体,能够根据用户输入的目标,自主规划、执行和优化任务,最终生成结果。它不同于传统聊天模型(如ChatGPT)的单次回答能力,而是能处理多步骤、工具依赖、动态调整的复杂任务。例如:任务:用户要求“撰写一篇关于AI伦理的文章”。智能体行为:搜索资料、整理信息、撰写草稿、校对优化,全程无需用户干预。制造业场景(ManuS):
- Xcode 26 现已发布,并支持代码智能 它与基于 Cursor 和 AI Agent 的工作流程相比如何?
知识大胖
SwiftUI源码大全xcodemacoside
简介Xcode26昨天发布了!惊喜的是,它支持macOS15,但要使用新的ChatGPT助手,你需要macOS26Tahoe。所以我把我的M3MaxMacBookPro升级到了Tahoe。我不是说你应该升级,但我这么做是为了测试Xcode的新功能并与大家分享!值得注意的是,这是迄今为止最小的Xcode版本(下载大小)!正如Apple在Xcode新功能会话视频(我建议您观看)中所说的那样,这是一项巨
- 12 个强大的 DeepSeek AI 提示将彻底改变您的日常生活
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
内容写作的最佳提示让我们从写作开始吧。无论您是博主、学生还是社交媒体创作者,这些提示都将帮助您创作出精彩的内容。提示1:“扮演专业文案撰稿人,为[产品/服务]撰写引人注目的广告文案。文案应引人入胜、具有说服力,且字数不得超过100个字。”这使得ChatGPT的响应结构就像真实的广告文案一样。提示2:“以更具吸引力和说服力的方式重写此段落,同时保持含义不变:[插入文本]。”推荐文章《Neo4j上使用
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- Llama-Omni会说话的人工智能“语音到语音LLM” 利用低延迟、高质量语音转语音 AI 彻底改变对话方式(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程llama人工智能nvidiallm
介绍“单靠技术是不够的——技术与文科、人文学科的结合,才能产生让我们心花怒放的成果。”——史蒂夫·乔布斯近年来,人机交互领域发生了重大变化,尤其是随着ChatGPT、GPT-4等大型语言模型(LLM)的出现。虽然这些模型主要基于文本,但人们对语音交互的兴趣日益浓厚,以使人机对话更加无缝和自然。然而,实现语音交互而不受语音转文本处理中常见的延迟和错误的影响仍然是一个挑战。关键字:Llama-Omni
- AnythingLLM教程系列之 09 AnythingLLM 支持自定义音频转录提供程序
知识大胖
NVIDIAGPU和大语言模型开发教程llama3anythingllmllm
什么是AnythingLLM?AnythingLLM是最易于使用的一体化AI应用程序,可以执行RAG、AI代理等操作,且无需任何代码或基础设施难题。您需要为您的企业或组织提供一款完全可定制、私有且一体化的AI应用程序,该应用程序基本上是一个具有许可的完整ChatGPT,但具有任何LLM、嵌入模型或矢量数据库。如何安装《无需任何代码构建自己的大模型知识库:AnythingLLM最易于使用的一体化AI
- AnythingLLM教程系列之 04 AnythingLLM 允许您以正确的格式导出聊天日志,以构建 GPT-3.5 和 OpenAI 上其他可用模型的微调模型(教程含安装步骤)
知识大胖
NVIDIAGPU和大语言模型开发教程llama3aianythinllmllama
什么是AnythingLLM?AnythingLLM是最易于使用的一体化AI应用程序,可以执行RAG、AI代理等操作,且无需任何代码或基础设施难题。您需要为您的企业或组织提供一款完全可定制、私有且一体化的AI应用程序,该应用程序基本上是一个具有许可的完整ChatGPT,但具有任何LLM、嵌入模型或矢量数据库。如何安装《无需任何代码构建自己的大模型知识库:AnythingLLM最易于使用的一体化AI
- 低成本作弊神器?使用ESP32将通义千问AI接入学生计算器
前因:IT之家9月24日消息,YouTube频道ChromaLock于9天前发布视频,介绍了名为TI-32的改造电路板,加装在德州仪器TI-84Plus图形计算器上,可以接入ChatGPT。IT之家查询公开资料,在PSAT、SAT和ACT大学入学考试、IB和AP考试中,标准化组织已经批准考生使用TI-84Plus图形计算器。ChromaLock探索了该计算器的连接端口,设计了名为TI-32的改造电
- ChatGPT 技术核心:模型结构、能力差异与实战价值
ChatGPT系列模型全景与版本进化按时间与技术路标排序,核心模型如下:GPT‑3.5(2022)GPT‑4(2023年3月)GPT‑4Turbo/GPT‑4.5(2023年末/2025年2月)GPT‑4o(Omni)(2024年5月)GPT‑4o mini/o1/o3系列/GPT‑4.1(2024–2025)每一代都是对前代提升版本,从参数规模、性能、能力上不断优化。核心技术差异详解(面向高级程
- chatgpt赋能python:Python音频降噪处理:使用Python减少噪音并提升声音质量
Python音频降噪处理:使用Python减少噪音并提升声音质量在日常生活中,使用音频通信是非常普遍的。但是,由于各种原因,我们可能会遇到许多噪音干扰,从而降低语音质量并影响通信的效果。为了解决这个问题,我们可以使用Python来降噪音。什么是音频降噪处理?我们每天听到的声音都是由许多不同频率的声音波形组成的。噪音是指在声音中添加了其他频率的声音波形。这些声音可以是来自电器的嗡嗡声、风扇或其他背景
- chatgpt赋能python:Python降噪技术突出人声,在语音处理中的应用
atest166
ChatGptchatgptpython语音识别计算机
Python降噪技术突出人声,在语音处理中的应用在现代社会中,语音处理已经成为了一个普遍的技术,由于环境干扰和录音设备的限制,录音中往往会有许多杂音和噪音,影响语音质量和信号分析。在此背景下,降噪技术逐渐成为了一项重要的技术手段。Python作为一门功能强大的编程语言,可以被广泛地应用于语音处理,尤其是在降噪方面。在本篇文章中,我们会详细探讨Python降噪技术突出人声的应用。什么是语音降噪?语音
- 大模型微服务架构:拆解AI应用的资源密码
陈乔布斯
大模型AI人工智能人工智能架构微服务AI大模型pythonAPI
引言:为什么大模型应用需要微服务架构?想象你经营一家网红餐厅,刚开始只有一个厨师负责所有菜品(类似单体架构)。随着生意火爆,顾客需要川菜、粤菜、甜品等多种选择,单个厨师忙不过来,还经常出错。于是你招聘了川菜师傅、粤菜师傅、甜品师,每人专注一个领域(类似微服务架构),效率和质量立刻提升——这就是大模型应用从单体架构转向微服务的核心原因。随着ChatGPT、文心一言等大模型技术的爆发,互联网企业正将大
- Embabel:下一代企业级JVM AI智能体框架的革命引言:AI时代的Java生态新机遇
DZSpace
软件开发jvm人工智能java
在生成式AI(如ChatGPT、Claude、Gemini)席卷全球的背景下,Python凭借其丰富的AI工具链(如PyTorch、LangChain)成为主流开发语言。然而,在企业级软件开发领域,Java和JVM生态(如Kotlin、Scala)长期以来占据主导地位,尤其是在金融、电信、电商等对稳定性、可扩展性、事务管理要求极高的场景。RodJohnson(Spring框架创始人)敏锐地发现了这
- Building Apps with AI Tools: ChatGPT, Semantic Kernel, and Langchain 项目推荐
滕娴殉
BuildingAppswithAITools:ChatGPT,SemanticKernel,andLangchain项目推荐building-apps-with-ai-tools-chatgpt-semantic-kernel-langchain-4469616ThisisacoderepositoryfortheLinkedInLearningcourseBuildingAppswithAIT
- AI让我焦虑,可有解药?
大虫小呓
人工智能AIGC
被AI相关的信息搞焦虑了?这波以生成式人工智能为核心的生产力变革浪潮,从23年开始短短的两年时间里一浪接一浪的奔涌而来,从ChatGPT、AGI,到多模态大模型、Agent、Cursor,到DeepSeek、Manus,到近期的MCP协议、A2A协议等各种新概念、应用或工具的信息接连不断的往我们的脑子冲进来。就像被连续扇耳光,上一个还没反应过来下一个又来了,被扇得脑袋瓜子嗡嗡的!我发现一个普遍的现
- 专题:2025大模型2.0:GPT到DeepSeek技术演进与产业落地报告|附200+份报告PDF汇总下载
拓端研究室
pdf
原文链接:https://tecdat.cn/?p=42738当OpenAI在2023年推出ChatGPT时,业界或许未曾预料到,短短两年后大模型会以“2.0”形态重塑产业逻辑。本报告汇总解读基于国家工业信息安全发展研究中心与联想集团联合发布的《2025大模型2.0产业发展报告》,以及哈工大计算学部人工智能学院关于DeepSeek系列模型的技术白皮书,深入剖析大模型从“技术验证”向“商业落地”跃迁
- 从AI辅助编码到自动部署:前端开发提效全流程实践
程序猿全栈の董(董翔)
人工智能热门技术领域人工智能新兴领域热门技术
从AI辅助编码到自动部署:前端开发提效全流程实践**摘要本文结合ChatGPT、GitHubCopilot等AI工具,分享从需求分析、代码编写到自动化部署的全流程提效技巧。通过真实案例演示如何利用AI工具提升30%以上的开发效率,适合有一定前端基础的开发者阅读。一、引言:AI时代的前端开发变革现状:据StackOverflow2023调查,65%的开发者使用AI辅助工具,平均减少35%的调试时间。
- Spring AI 教程(一)概述
PG Thinker
SpringAISpringChatGPT人工智能springjavaSpringAI
前言 我在23年11月那会儿关注了SpringAI项目,当时我恰好正热衷于大语言模型的开发,然而当时主流的开发语言只有Python,Java生态中并没有强大的框架供我们使用。 我当时也是靠一些封装OpenAI接口的SDK包来玩ChatGPT的,但是整体的体验较差。好在我通过一些技术交流群了解了一个正在处于实验阶段的项目:SpringAI。于是果断前往它的Github仓库进行学习,而我也恰好见证了S
- 【人工智能】大比拼:文心一言 VS ChatGPT —— 禅与计算机程序设计艺术亲自测评
AI天才研究院
ChatGPT人工智能文心一言chatgpt
收到了百度“文心一言”的内测邀请,现在给大家亲身体验测评一下!禅与计算机程序设计艺术先说结论:文心一言表现基本符合预期。与ChatGPT有一定差距,应该在几个月左右。但是禅与计算机程序设计艺术,挺期待ChatGLM-130B版本的效果的。因为,ChatGLM-6B在本地测评的效果,还是非常不错的!目录文心一言写一篇论文介绍一下你自己,从技术原理、应用场景、未来发展、当前不足等方面,不少于3000字
- 深入解读 Qwen3 技术报告(一):引言
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理python语言模型深度学习
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展1.引言:迎接大型语言模型的新纪元我们正处在一个由人工智能(AI
- Agentic AI与Gen AI区别
500佰
技术资讯NodeJS人工智能
AgenticAI上班族的摸鱼神器我最近一年都在用AI,非但没有感觉AI成了我的助理,却感觉我好像再给AI打工。因为我总是需要不断去喂提示词,要不断调整模型的输出,我就像一个保姆一样要守在ChatGPT旁边,其实此时此刻,人类点亮的科技树,已经够我们用AI去自动化60%-70%的工作时长了,但这个实际进度还在个位数,ni知道问题所在吗。这问题在于,我们还处在generatedAI的阶段,我们和AI
- 7.3 React+CLI双剑合璧:GitHub监控工具界面开发实战全攻略
少林码僧
github前端gpt人工智能语言模型
React+CLI双剑合璧:GitHub监控工具界面开发实战全攻略-GitHubSentinelAgent用户界面原型设计与实现关键词:前端框架选型、React原型设计、API集成策略、CLI开发、组件化测试1.1用户界面功能规划通过ChatGPT交互式规划核心功能模块:
- 2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD
哪 吒
搬砖工逆袭Java架构师华为od算法华为OD机试2025B卷java
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第5期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、逻辑分析第3天、逻辑分析第4天、字符串处理第5天、正则表达式第6天、深度优先搜索dfs第7天、深度优先搜索dfs六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605
- 2025B卷 - 华为OD机试七日集训第4期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
哪 吒
搬砖工逆袭Java架构师华为od算法python华为OD机试2025B卷
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第4期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、逻辑分析第3天、逻辑分析第4天、贪心算法第5天、二分查找第6天、字符串处理第7天、字符串处理六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSon
- 2025B卷 - 华为OD机试七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、数组第3天、双指针第4天、贪心算法第5天、字符串处理第6天、深度优先搜索DFS第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSo
- AI时代下如何学习前端之第2篇:前端开发者的“AI焦虑“:被替代还是被赋能?
指尖动听知识库
AI时代下如何学习前端人工智能前端
文/指尖动听知识库-胖胖文章为付费内容,商业行为,禁止私自转载及抄袭,违者必究!!!文章专栏:AI时代下如何学习前端“每当我看到AI生成完美代码时,都会想:我的工作还有价值吗?”——一位有5年经验的前端开发者如果你读了上一篇《ChatGPT问世后ÿ
- Attention机制完全解析:从原理到ChatGPT实战
学废了wuwu
chatgpt
一、Attention的本质与计算步骤1.1核心思想动态聚焦:Attention是一种信息分配机制,让模型在处理输入时动态关注最重要的部分。类比:像人类阅读时用荧光笔标记关键句子。1.2计算三步曲(以"吃苹果"为例)Q(Query)、K(Key)、V(Value)的分工角色数学表示作用类比QW_q·输入向量主动提问者:表示当前需要关注什么好比"学生举手提问"KW_k·输入向量匹配者:提供被匹配的特
- 论文略读: ALPAGASUS: TRAINING A BETTER ALPACA WITH FEWER DATA
ICLR20241背景大模型通常需要在有监督指令数据集上进行指令微调来加强指令遵循能力但是广泛使用的数据集包含许多具有不正确或不相关响应的低质量样本,这对大模型微调具有误导性——>论文提出了一种简单有效的数据选择策略,使用ChatGPT自动识别和过滤掉低质量数据同时引入了:ALPAGASUS,它是仅对从52k训练数据中过滤出来的9k高质量数据进行微调。在多个测试集和受控人类评估上显着优于GPT-4
- 全球 AI HR 浪潮下的中国实践:从效率革命到战略重构
weixin_54980836
人工智能重构
一、全球AIHR的技术跃迁与价值重构在DeepSeek、ChatGPT引发的生成式AI革命中,人力资源管理领域正经历着从“工具替代”到“认知重构”的范式转变。Gartner《2025年人力资源技术趋势报告》指出,AI在HR场景的应用已从简历筛选、薪资计算等基础效率工具,升级为支持组织战略决策的“数字伙伴”。这种转变的底层逻辑,源于大模型技术带来的三大突破:多模态交互能力:AI已能同时处理文本、语音
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不