Pyspark_结构化流4

Pyspark

注:大家觉得博客好的话,别忘了点赞收藏呀,本人每周都会更新关于人工智能和大数据相关的内容,内容多为原创,Python Java Scala SQL 代码,CV NLP 推荐系统等,Spark Flink Kafka Hbase Hive Flume等等~写的都是纯干货,各种顶会的论文解读,一起进步。
今天继续和大家分享一下Pyspark_结构化流4
#博学谷IT学习技术支持


文章目录

  • Pyspark
  • 前言
  • 一、数据模拟器代码
  • 二、需求说明和代码实现
  • 总结


前言

接上次继续Pyspark_结构化流,今天主要是一个结构化流结合kafka的一个小案例。


一、数据模拟器代码

1- 创建一个topic, 放置后续物联网数据: search-log-topic
./kafka-topics.sh --create --zookeeper node1:2181 --topic search-log-topic --partitions 3 --replication-factor 2

import json
import random
import time
import os
from kafka import KafkaProducer


# 锁定远端操作环境, 避免存在多个版本环境的问题
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ["PYSPARK_PYTHON"] = "/root/anaconda3/bin/python"
os.environ["PYSPARK_DRIVER_PYTHON"] = "/root/anaconda3/bin/python"

# 快捷键:  main 回车
if __name__ == '__main__':
    print("模拟物联网数据")

    # 1- 构建一个kafka的生产者:
    producer = KafkaProducer(
        bootstrap_servers=['node1:9092', 'node2:9092', 'node3:9092'],
        acks='all',
        value_serializer=lambda m: json.dumps(m).encode("utf-8")
    )
    # 2- 物联网设备类型
    deviceTypes = ["洗衣机", "油烟机", "空调", "窗帘", "灯", "窗户", "煤气报警器", "水表", "燃气表"]

    while True:
        index = random.choice(range(0, len(deviceTypes)))
        deviceID = f'device_{index}_{random.randrange(1, 20)}'
        deviceType = deviceTypes[index]
        deviceSignal = random.choice(range(10, 100))

        # 组装数据集
        print({'deviceID': deviceID, 'deviceType': deviceType, 'deviceSignal': deviceSignal,
               'time': time.strftime('%s')})

        # 发送数据
        producer.send(topic='search-log-topic',
                      value={'deviceID': deviceID, 'deviceType': deviceType, 'deviceSignal': deviceSignal,
                                       'time': time.strftime('%s')}
        )

        # 间隔时间 5s内随机
        time.sleep(random.choice(range(1, 5)))

生成的kafka数据
{‘deviceID’: ‘device_0_14’, ‘deviceType’: ‘洗衣机’, ‘deviceSignal’: 18, ‘time’: ‘1680157073’}
{‘deviceID’: ‘device_2_8’, ‘deviceType’: ‘空调’, ‘deviceSignal’: 30, ‘time’: ‘1680157074’}
{‘deviceID’: ‘device_0_17’, ‘deviceType’: ‘洗衣机’, ‘deviceSignal’: 84, ‘time’: ‘1680157076’}
{‘deviceID’: ‘device_2_15’, ‘deviceType’: ‘空调’, ‘deviceSignal’: 99, ‘time’: ‘1680157078’}
{‘deviceID’: ‘device_1_17’, ‘deviceType’: ‘油烟机’, ‘deviceSignal’: 50, ‘time’: ‘1680157081’}

二、需求说明和代码实现

求: 各种信号强度>30的设备的各个类型的数量和平均信号强度,先过滤再聚合

from pyspark.sql import SparkSession
import pyspark.sql.functions as F
import os

# 锁定远端环境, 确保环境统一
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("综合案例: 物联网案例实现")

    # 1- 创建SparkSession对象
    spark = SparkSession.builder \
        .appName('file_source') \
        .master('local[1]') \
        .config('spark.sql.shuffle.partitions', 4) \
        .getOrCreate()

    # 2- 从Kafka中读取消息数据
    df = spark.readStream \
        .format('kafka') \
        .option('kafka.bootstrap.servers', 'node1:9092,node2:9092,node3:9092') \
        .option('subscribe', 'search-log-topic') \
        .option('startingOffsets', 'earliest') \
        .load()

    # 3- 处理数据
    # 求: 各种信号强度>30的设备的各个类型的数量和平均信号强度,先过滤再聚合
    # 数据: {'deviceID': 'device_4_4', 'deviceType': '灯', 'deviceSignal': 20, 'time': '1677243108'}
    df = df.selectExpr('CAST(value AS STRING)')

    # 思考 如何做呢?
    # 需要将这个Json字符串中各个字段都获取出来, 形成一个多列的数据
    # 专业名称: JSON拉平
    # 涉及函数: get_json_object()    json_tuple()
    # df.createTempView('t1')

    # SQL
    # df = spark.sql("""
    #     select
    #         get_json_object(value,'$.deviceID')  as deviceID,
    #         get_json_object(value,'$.deviceType') as deviceType,
    #         get_json_object(value,'$.deviceSignal') as deviceSignal,
    #         get_json_object(value,'$.time') as time
    #     from  t1
    # """)
    # df = spark.sql("""
    #     select
    #         json_tuple(value,'deviceID','deviceType','deviceSignal','time') as (deviceID,deviceType,deviceSignal,time)
    #     from  t1
    # """)

    # DSL
    # df = df.select(
    #     F.get_json_object('value', '$.deviceID').alias('deviceID'),
    #     F.get_json_object('value','$.deviceType').alias('deviceType'),
    #     F.get_json_object('value','$.deviceSignal').alias('deviceSignal'),
    #     F.get_json_object('value','$.time').alias('time')
    # )

    df = df.select(
        F.json_tuple('value', 'deviceID', 'deviceType', 'deviceSignal', 'time').alias('deviceID', 'deviceType',
                                                                                      'deviceSignal', 'time')
    )

    # 求: 各种信号强度>30的设备的各个类型的数量和平均信号强度,先过滤再聚合
    df = df.where(df['deviceSignal'] > 30).groupBy('deviceType').agg(
        F.count('deviceID').alias('device_cnt'),
        F.round(F.avg('deviceSignal'), 2).alias('deviceSignal_avg')
    )
    # 4- 打印结果
    df.writeStream.format('console').outputMode('complete').start().awaitTermination()


总结

今天主要和大家分享了如何用Pyspark_结构化流结合kafka模拟物连网小案例。

你可能感兴趣的:(Pyspark系列,spark,大数据,python,分布式)