工业视觉钢材缺陷检测 实战项目

工业视觉钢材缺陷检测 实战项目

项目背景概述

质量是制造企业的核心竞争力之一,企业对产品质量的要求越来越高。但是,产品在制造过程中有时会出现表面缺陷,如何进行高效的质量控制来避免表面瑕疵产生,一直是制造企业面临的棘手问题之一。

传统主要通过人工抽检进行检测,由于抽检率低、实时性差,且受检测人员经验、疲劳状态等主观因素影响,往往检测结果稳定性不高,准确性无法保障,易出现瑕疵漏检等情况,难以适应高效的生产和质量要求。

工业视觉钢材缺陷检测 实战项目_第1张图片

随着数智技术发展,基于机器视觉的表面缺陷检测应用得以在实践中展开,大大提高了产线品控效率,避免了因作业条件、主观判断等因素影响检测结果的准确性和稳定性,在产品制造过程中,可以实现对每一环节、每一件产品表面缺陷的实时检测,更精确、快速的识别产品表面瑕疵缺陷,同时也节省了制造企业在质检环节的人工投入,降低了人力成本支出。目前在新能源、汽车、电子、包装、印刷、化工、食品、塑胶、纺织等制造领域广泛应用。

工业视觉钢材缺陷检测 实战项目_第2张图片

解决思路

从零搭建一个基于深度学习的缺陷检测系统:通过喂给神经网络大量的历史缺陷数据集,进行模型训练,最终使用深度学习模型进行实时工业产品缺陷检测。

更多请查看:
工业缺陷检测场景简介

代码实战:YOLOv5实现钢材表面缺陷检测

针对钢材缺陷检测任务,将使用 Yolo V5 对数据集的图像进行检测。下载 Yolo V5 的 github 源码,配置好数据集。

源码地址:https://github.com/ultralytics/yolov5

YOLOv5 是 You Only Look Once (YOLO) 计算机视觉模型系列中的一个模型。YOLOv5 通常用于检测物体。YOLOv5 有四个主要版本:小型 (s)、中型 (m)、大型 (l) 和超大型 (x),每个版本都提供更高的准确率。每个变体也需要不同的时间来训练。

工业视觉钢材缺陷检测 实战项目_第3张图片

在上图中,您可以看到 YOLOv5 的所有变体训练速度都比 EfficientDet 快。最准确的 YOLOv5 模型 YOLOv5x 可以比 EfficientDet D4 模型以相似的准确度更快地处理图像。

YOLO 模型是第一个将边界框预测过程与端到端可微网络中的类标签连接起来的对象检测器。

YOLOv5 架构概述

YOLOv5 是从输入图像中创建特征,然后将这些特征输入预测系统,系统预测对象的位置,并在周围绘制框,并预测它们的类别。

YOLO 网络由三个主要部分组成。

    1. Backbone: New CSP-Darknet53
    1. Neck: SPPF, New CSP-PAN
    1. Head: YOLOv3 Head

工业视觉钢材缺陷检测 实战项目_第4张图片

关于 YOLO 更多内容可查看以下文章:

YOLOv4

YOLOv5

查看数据集

由东北大学(NEU)发布的表面缺陷数据库,收集了热轧钢带的六种典型表面缺陷,即轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc)。该数据库包括1,800个灰度图像:六种不同类型的典型表面缺陷,每一类缺陷包含300个样本。

对于缺陷检测任务,数据集提供了注释,指示每个图像中缺陷的类别和位置。对于每个缺陷,黄色框是指示其位置的边框,绿色标签是类别分数。

工业视觉钢材缺陷检测 实战项目_第5张图片

数据集

工业视觉钢材缺陷检测 实战项目_第6张图片

  • 随机查看四张图片
  • 训练集图片数量
  • 测试集图片数量
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
from matplotlib import pyplot as plt 
import cv2 as cv

train_image_path = '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/train/images'
valid_image_path = '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid/images'

train_dir = os.listdir(train_image_path)
valid_dir = os.listdir(valid_image_path)

print('训练集数量', len(train_dir))
print('测试集数量', len(valid_dir))
训练集数量 1740
测试集数量 60

标签情况:
[‘crazing’,
‘inclusion’,
‘patches’,
‘pitted_surface’,
‘rolled-in_scale’,
‘scratches’]

fig,ax = plt.subplots(1,4,figsize=(10,5))
image = cv.imread(os.path.join(valid_image_path,"crazing_10.jpg"))
ax[0].imshow(image)
image = cv.imread(os.path.join(valid_image_path,"inclusion_10.jpg"))
ax[1].imshow(image)
image = cv.imread(os.path.join(valid_image_path,"patches_10.jpg"))
ax[2].imshow(image)
image = cv.imread(os.path.join(valid_image_path,"scratches_10.jpg"))
ax[3].imshow(image)
fig.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gLji5tzU-1680494033696)(output_3_0.png)]

创建系统文件

!ls
__notebook_source__.ipynb

下载 YoloV5

# Download YOLOv5
!git clone https://github.com/ultralytics/yolov5  # clone repo
    
%cd yolov5
# Install dependencies

%pip install -qr requirements.txt  # install dependencies
!ls

import torch
print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
Cloning into 'yolov5'...
remote: Enumerating objects: 15123, done.[K
remote: Counting objects: 100% (78/78), done.[K
remote: Compressing objects: 100% (66/66), done.[K
remote: Total 15123 (delta 42), reused 33 (delta 12), pack-reused 15045[K
Receiving objects: 100% (15123/15123), 14.19 MiB | 9.17 MiB/s, done.
Resolving deltas: 100% (10359/10359), done.
/kaggle/working/yolov5
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tensorflow-io 0.21.0 requires tensorflow-io-gcs-filesystem==0.21.0, which is not installed.
dask-cudf 21.10.1 requires cupy-cuda114, which is not installed.
beatrix-jupyterlab 3.1.7 requires google-cloud-bigquery-storage, which is not installed.
tensorflow 2.6.4 requires h5py~=3.1.0, but you have h5py 3.8.0 which is incompatible.
tensorflow 2.6.4 requires numpy~=1.19.2, but you have numpy 1.21.6 which is incompatible.
tensorflow 2.6.4 requires typing-extensions<3.11,>=3.7, but you have typing-extensions 4.1.1 which is incompatible.
tensorflow-transform 1.9.0 requires tensorflow!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,<2.10,>=1.15.5, but you have tensorflow 2.6.4 which is incompatible.
tensorflow-serving-api 2.9.0 requires tensorflow<3,>=2.9.0, but you have tensorflow 2.6.4 which is incompatible.
gcsfs 2022.5.0 requires fsspec==2022.5.0, but you have fsspec 2023.1.0 which is incompatible.
dask-cudf 21.10.1 requires dask==2021.09.1, but you have dask 2022.2.0 which is incompatible.
dask-cudf 21.10.1 requires distributed==2021.09.1, but you have distributed 2022.2.0 which is incompatible.[0m[31m
[0m[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv[0m[33m
[0mNote: you may need to restart the kernel to use updated packages.
CITATION.cff	 README.zh-CN.md  detect.py   requirements.txt	tutorial.ipynb
CONTRIBUTING.md  benchmarks.py	  export.py   segment		utils
LICENSE		 classify	  hubconf.py  setup.cfg		val.py
README.md	 data		  models      train.py
Setup complete. Using torch 1.11.0 (Tesla P100-PCIE-16GB)

配置 YAML 文件

  • 训练集图片和标签的地址
  • 验证图片和标签的地址
  • 类别数量
  • 类别名称
# Create .yaml file 
import yaml

data_yaml = dict(
    train = '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/train',
    val = '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid',
    nc = 6,
    names = ['crazing', 'inclusion', 'patches', 'pitted_surface', 'rolled-in_scale', 'scratches']
)

# creating the file in the yolov5/data.yaml directory

with open('data.yaml', 'w') as outfile:
    yaml.dump(data_yaml, outfile, default_flow_style=True)
!ls
CITATION.cff	 README.zh-CN.md  data.yaml   models		train.py
CONTRIBUTING.md  benchmarks.py	  detect.py   requirements.txt	tutorial.ipynb
LICENSE		 classify	  export.py   segment		utils
README.md	 data		  hubconf.py  setup.cfg		val.py

训练 Yolov5 模型

!wandb disabled
# -- img
!python train.py --img 640 --batch 16 --epochs 70 --data ./data.yaml --weights yolov5n.pt
W&B disabled.
[34m[1mwandb[0m: WARNING ⚠️ wandb is deprecated and will be removed in a future release. See supported integrations at https://github.com/ultralytics/yolov5#integrations.
[34m[1mtrain: [0mweights=yolov5n.pt, cfg=, data=./data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=70, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
[34m[1mgithub: [0mup to date with https://github.com/ultralytics/yolov5 ✅
YOLOv5  v7.0-97-gfa4bdbe Python-3.7.12 torch-1.11.0 CUDA:0 (Tesla P100-PCIE-16GB, 16281MiB)

[34m[1mhyperparameters: [0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
[34m[1mClearML: [0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5  in ClearML
[34m[1mComet: [0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
[34m[1mTensorBoard: [0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/
Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...
100%|█████████████████████████████████████████| 755k/755k [00:00<00:00, 115MB/s]
Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt to yolov5n.pt...
100%|██████████████████████████████████████| 3.87M/3.87M [00:00<00:00, 19.4MB/s]

Overriding model.yaml nc=80 with nc=6

                 from  n    params  module                                  arguments                     
  0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              
  1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                
  2                -1  1      4800  models.common.C3                        [32, 32, 1]                   
  3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  4                -1  2     29184  models.common.C3                        [64, 64, 2]                   
  5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  6                -1  3    156928  models.common.C3                        [128, 128, 3]                 
  7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  8                -1  1    296448  models.common.C3                        [256, 256, 1]                 
  9                -1  1    164608  models.common.SPPF                      [256, 256, 5]                 
 10                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 14                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     22912  models.common.C3                        [128, 64, 1, False]           
 18                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1     74496  models.common.C3                        [128, 128, 1, False]          
 21                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 24      [17, 20, 23]  1     14883  models.yolo.Detect                      [6, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]
Model summary: 214 layers, 1772035 parameters, 1772035 gradients, 4.2 GFLOPs

Transferred 343/349 items from yolov5n.pt
[34m[1mAMP: [0mchecks passed ✅
[34m[1moptimizer:[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias
[34m[1malbumentations: [0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
[34m[1mtrain: [0mScanning /kaggle/input/neu-det-yolo/NEU-DET-YOLO/train/labels... 1740 ima[0m
[34m[1mtrain: [0mWARNING ⚠️ /kaggle/input/neu-det-yolo/NEU-DET-YOLO/train/images/crazing_120.jpg: 1 duplicate labels removed
[34m[1mtrain: [0mWARNING ⚠️ /kaggle/input/neu-det-yolo/NEU-DET-YOLO/train/images/inclusion_62.jpg: 1 duplicate labels removed
[34m[1mtrain: [0mWARNING ⚠️ /kaggle/input/neu-det-yolo/NEU-DET-YOLO/train/images/patches_198.jpg: 1 duplicate labels removed
[34m[1mtrain: [0mWARNING ⚠️ Cache directory /kaggle/input/neu-det-yolo/NEU-DET-YOLO/train is not writeable: [Errno 30] Read-only file system: '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/train/labels.cache.npy'
[34m[1mval: [0mScanning /kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid/labels... 60 images,[0m
[34m[1mval: [0mWARNING ⚠️ Cache directory /kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid is not writeable: [Errno 30] Read-only file system: '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid/labels.cache.npy'

[34m[1mAutoAnchor: [0m3.24 anchors/target, 0.989 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train/exp/labels.jpg... 
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to [1mruns/train/exp[0m
Starting training for 70 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       0/69      1.97G    0.09443    0.03959    0.05022         55        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124    0.00296      0.481     0.0128    0.00385

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       1/69      2.35G    0.06365    0.04147    0.03278         53        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.289      0.184      0.155     0.0502

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       2/69      2.35G    0.05978    0.03654    0.01634         54        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.623      0.115      0.106     0.0314

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       3/69      2.35G    0.05594    0.03582   0.009596         61        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.354      0.183      0.137     0.0408

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       4/69      2.35G    0.05291    0.03502   0.008263         43        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.519      0.248      0.196     0.0832

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       5/69      2.35G     0.0503    0.03501   0.007264         59        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.53      0.489      0.446      0.171

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       6/69      2.35G    0.04788    0.03487   0.005603         64        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.676      0.244       0.37      0.155

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       7/69      2.35G    0.04748    0.03407   0.004983         49        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.389      0.463      0.436      0.166

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       8/69      2.35G    0.04573    0.03439   0.004757         42        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.661      0.394      0.451      0.194

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       9/69      2.35G    0.04492    0.03452   0.005419         53        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.664      0.227       0.32      0.153

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      10/69      2.35G    0.04409    0.03477   0.004775         44        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.547      0.418      0.487       0.19

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      11/69      2.35G    0.04299    0.03376   0.004574         54        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.601      0.464      0.519      0.227

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      12/69      2.35G    0.04276    0.03345   0.004303         53        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.758      0.249      0.354      0.129

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      13/69      2.35G    0.04196    0.03305    0.00328         50        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.543      0.619      0.634      0.313

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      14/69      2.35G    0.04184    0.03385    0.00348         44        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.604       0.54      0.604      0.291

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      15/69      2.35G    0.04103    0.03317   0.003495         56        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.516        0.5      0.577      0.255

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      16/69      2.35G    0.04057    0.03466   0.003991         47        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.586      0.645      0.645      0.325

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      17/69      2.35G    0.04042    0.03322   0.003537         59        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.431      0.488      0.431      0.209

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      18/69      2.35G    0.04006    0.03223   0.003051         44        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.66      0.601       0.68      0.344

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      19/69      2.35G    0.04016    0.03271   0.003451         57        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.764      0.563      0.689      0.369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      20/69      2.35G    0.03986    0.03239   0.003499         40        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.601      0.653      0.682      0.339

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      21/69      2.35G     0.0389    0.03197   0.002634         74        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.609      0.634      0.679       0.33

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      22/69      2.35G    0.03842    0.03221   0.002661         62        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.727      0.594      0.661      0.311

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      23/69      2.35G    0.03829    0.03186   0.002919         46        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.672      0.618      0.675      0.344

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      24/69      2.35G    0.03862    0.03224   0.003158         55        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.644      0.607      0.643      0.321

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      25/69      2.35G      0.038    0.03322   0.002688         59        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.52      0.459      0.542      0.244

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      26/69      2.35G    0.03716     0.0322   0.002437         56        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.666      0.611      0.682       0.33

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      27/69      2.35G    0.03762    0.03201   0.002927         57        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.621      0.718      0.698      0.367

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      31/69      2.35G    0.03674    0.03125   0.002392         50        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.573       0.65      0.697      0.352

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      32/69      2.35G    0.03653    0.03224   0.002655         54        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.57       0.65      0.639      0.322

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      33/69      2.35G    0.03657    0.03263   0.002156         43        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.625      0.655      0.669       0.36

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      34/69      2.35G    0.03644     0.0318   0.002517         79        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.673      0.628       0.65      0.315

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      35/69      2.35G    0.03589    0.03214   0.002322         57        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.697      0.634      0.678      0.368

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      36/69      2.35G    0.03553    0.03124   0.002237         52        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.702       0.66      0.701      0.369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      37/69      2.35G    0.03639    0.03221   0.001992         64        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.643      0.697      0.672      0.356

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      38/69      2.35G    0.03528    0.03118   0.002051         53        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.658      0.631       0.67      0.352

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      39/69      2.35G    0.03554    0.03098   0.001782         42        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.641      0.659      0.703      0.337

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      40/69      2.35G    0.03527    0.03145   0.001548         49        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.672      0.679      0.721      0.374

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      41/69      2.35G    0.03571    0.03147   0.001659         58        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.728      0.617      0.702      0.377

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      42/69      2.35G    0.03504    0.03086   0.001852         48        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.669      0.626       0.68      0.369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      43/69      2.35G    0.03468    0.03048   0.001757         52        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.66      0.609      0.654      0.328

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      44/69      2.35G     0.0349    0.03125   0.001606         55        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.672      0.646      0.699      0.346

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      48/69      2.35G    0.03405    0.03076   0.001546         56        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.707      0.639      0.707       0.37

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      49/69      2.35G     0.0346    0.03047   0.001458         58        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.734      0.639      0.711      0.369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      50/69      2.35G    0.03389    0.03134   0.001409         66        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.627      0.704      0.716      0.397

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      51/69      2.35G    0.03325    0.03028   0.001466         56        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.687      0.628      0.703      0.372

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      52/69      2.35G    0.03395    0.03087   0.001405         55        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.643      0.713      0.738      0.405

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      53/69      2.35G    0.03332    0.03026   0.001586         76        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.721      0.634      0.713      0.385

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      54/69      2.35G    0.03341    0.03028    0.00154         50        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.631       0.66      0.695      0.354

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      55/69      2.35G    0.03331     0.0293    0.00161         52        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.702      0.669      0.728      0.392

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      56/69      2.35G    0.03322    0.03058   0.001471         61        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.633      0.748      0.729       0.41

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      57/69      2.35G    0.03292    0.03025   0.001636         63        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.739      0.675      0.737        0.4

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      58/69      2.35G    0.03289    0.03107   0.001286         53        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.606      0.689      0.699      0.383

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      59/69      2.35G    0.03278    0.03055   0.001203         58        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.62       0.68      0.703      0.378

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      64/69      2.35G    0.03166    0.02994   0.001321         67        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.68      0.707      0.727      0.398

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      65/69      2.35G    0.03225    0.03032  0.0009906         56        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.732      0.706      0.732      0.403

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      66/69      2.35G    0.03212    0.03041    0.00102         71        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.728      0.719      0.746      0.415

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      67/69      2.35G    0.03151    0.02948   0.001617         36        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.67      0.684      0.719      0.399

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      68/69      2.35G    0.03154    0.02955    0.00113         57        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.721      0.673      0.731      0.409

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      69/69      2.35G    0.03151    0.03004   0.001312         49        640: 1
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.673      0.677      0.743      0.411

70 epochs completed in 0.653 hours.
Optimizer stripped from runs/train/exp/weights/last.pt, 3.9MB
Optimizer stripped from runs/train/exp/weights/best.pt, 3.9MB

Validating runs/train/exp/weights/best.pt...
Fusing layers... 
Model summary: 157 layers, 1767283 parameters, 0 gradients, 4.2 GFLOPs
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.717      0.719      0.746      0.417
               crazing         60         18      0.617      0.278       0.44       0.12
             inclusion         60         27      0.448      0.571      0.505      0.234
               patches         60         26      0.836      0.923      0.913      0.593
        pitted_surface         60         14      0.943          1      0.995      0.771
       rolled-in_scale         60         19      0.751      0.842      0.838      0.412
             scratches         60         20      0.707        0.7      0.785      0.372
Results saved to [1mruns/train/exp[0m
[34m[1mwandb[0m: WARNING ⚠️ wandb is deprecated and will be removed in a future release. See supported integrations at https://github.com/ultralytics/yolov5#integrations.
Exception ignored in: 
Traceback (most recent call last):
  File "/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1358, in __del__
  File "/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1283, in _shutdown_workers
AttributeError: 'NoneType' object has no attribute 'python_exit_status'
Exception ignored in: 
Traceback (most recent call last):
  File "/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1358, in __del__
  File "/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1283, in _shutdown_workers
AttributeError: 'NoneType' object has no attribute 'python_exit_status'

训练观察

# -- img
!python train.py --img 640 --batch 16 --epochs 60 --data ./data.yaml --weights yolov5n.pt
Model summary: 157 layers, 1767283 parameters, 0 gradients, 4.2 GFLOPs
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124       0.64      0.683      0.745       0.39
               crazing         60         18      0.625      0.278      0.544      0.175
             inclusion         60         27      0.444      0.563      0.553      0.255
               patches         60         26      0.639      0.886      0.895      0.548
        pitted_surface         60         14      0.867      0.931      0.986      0.711
       rolled-in_scale         60         19      0.623      0.737      0.737      0.315
             scratches         60         20      0.641        0.7      0.757      0.333
# -- img
!python train.py --img 640 --batch 16 --epochs 70 --data ./data.yaml --weights yolov5n.pt
Model summary: 157 layers, 1767283 parameters, 0 gradients, 4.2 GFLOPs
                 Class     Images  Instances          P          R      mAP50   
                   all         60        124      0.717      0.719      0.746      0.417
               crazing         60         18      0.617      0.278       0.44       0.12
             inclusion         60         27      0.448      0.571      0.505      0.234
               patches         60         26      0.836      0.923      0.913      0.593
        pitted_surface         60         14      0.943          1      0.995      0.771
       rolled-in_scale         60         19      0.751      0.842      0.838      0.412
             scratches         60         20      0.707        0.7      0.785      0.372

查看模型在验证集的效果

!ls
%cd runs
%cd train/exp
%ls

真实标签

val_batch1_labels_path = "/kaggle/working/yolov5/runs/train/exp/val_batch1_labels.jpg"
img = cv.imread(val_batch1_labels_path)
type(img)
plt.figure(figsize=(15, 15))
plt.imshow(img)

预测效果

val_batch1_pred_path = "/kaggle/working/yolov5/runs/train/exp/val_batch1_pred.jpg"
img = cv.imread(val_batch1_pred_path )
type(img)
plt.figure(figsize=(15, 15))
plt.imshow(img)

模型测试

%cd /kaggle/working/yolov5
%ls
!python detect.py --source /kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid/images/crazing_1.jpg --weights /kaggle/working/yolov5/runs/train/exp/weights/best.pt
%cd /kaggle/working/yolov5/runs/detect/exp/
%ls
crazing_1_path = "/kaggle/working/yolov5/runs/detect/exp/crazing_1.jpg"
img = cv.imread(crazing_1_path)
plt.imshow(img)

将预测结果变成 CSV 格式

竞赛需要提交 CSV 格式的文件

函数准备

  • 确保 utils 文件夹在当前路径下
%cd /kaggle/working/yolov5
%ls
from utils.dataloaders import *
from utils.general import *

# datasets.py 里有 LoadImages 方法 、letterbox 方法
# general.py 里有 non_max_suppression 方法

def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords

def clip_coords(boxes, img_shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    boxes[:, 0].clamp_(0, img_shape[1])  # x1
    boxes[:, 1].clamp_(0, img_shape[0])  # y1
    boxes[:, 2].clamp_(0, img_shape[1])  # x2
    boxes[:, 3].clamp_(0, img_shape[0])  # y2
def detect1Image(im0, imgsz, model, device, conf_thres, iou_thres):
    img = letterbox(im0, new_shape=imgsz)[0]
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)


    img = torch.from_numpy(img).to(device)
    img =  img.float()  # uint8 to fp16/32
    img /= 255.0   
    
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    pred = model(img, augment=False)[0]

    # Apply NMS
    pred = non_max_suppression(pred.cpu(), conf_thres, iou_thres)
    

    boxes = []
    scores = []
    class_names = []
    
    for i, det in enumerate(pred):  # detections per image
        # save_path = 'draw/' + image_id + '.jpg'
        
        if det is not None and len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

            # Write results
            for *xyxy, conf, cls in det:
                boxes.append([int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])])
                scores.append(conf)
                class_names.append(cls)

    return np.array(boxes), np.array(scores), np.array(class_names)
def format_prediction_string(class_names, scores, boxes):
    pred_strings = []
    for j in zip(class_names, scores, boxes):
        pred_strings.append("{0} {1:.4f} {2} {3} {4} {5}".format(j[0], j[1], j[2][0], j[2][1], j[2][2], j[2][3]))

    return " ".join(pred_strings)

source = '/kaggle/input/neu-det-yolo/NEU-DET-YOLO/valid/images'
weights = '/kaggle/working/yolov5/runs/train/exp/weights/best.pt'

if not os.path.exists(weights):
        print('best.pt 路径不对')

imgsz = 640  
conf_thres = 0.5
iou_thres = 0.6

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

imagenames =  os.listdir(source)

# 导入模型
model = torch.load(weights, map_location=device)['model'].float()  # load to FP32  
model.to(device).eval()

# 导入图片
dataset = LoadImages(source, img_size=imgsz)

# 记录预测结果
results = []

# 预测结果随机展示
# fig, ax = plt.subplots(5, 2, figsize=(30, 70))

# 计数,用于展示 10 张图
count = 0

for name in imagenames:
    image_id = name.split('.')[0]
    # 读入图片
    im01 = cv2.imread('%s/%s.jpg'%(source,image_id))  # BGR
    assert im01 is not None, 'Image Not Found '
    im_w, im_h = im01.shape[:2]
    # boxes 矩形框 xyxy,scores:[confidence, class] 
    boxes, scores, class_names = detect1Image(im01, imgsz, model, device, conf_thres, iou_thres)
    print('图像的ID : ', image_id)
    print('图像的 boxes :', boxes)
    print('图像的 scores :',scores)
    print('图像的 class_names :',class_names)
    
    if boxes is not None: 
#         for boxe in boxes:
#             boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
#             boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
            
        boxes = boxes[scores >= 0.05].astype(np.int32)
        scores = scores[scores >=float(0.05)]
    
    result = {
            'image_id': image_id,
            'PredictionString': format_prediction_string(class_names, scores, boxes)
        }

    results.append(result)
test_df = pd.DataFrame(results, columns=['image_id', 'PredictionString'])
# test_df.to_csv('submission.csv', index=False)
test_df.head()

路径转化到 Output

%ls
test_df.to_csv('submission.csv', index=False)

你可能感兴趣的:(人工智能,计算机视觉,深度学习)