【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第1张图片
CVPR-2017


文章目录

  • 1 Background and Motivation
  • 2 Related Work
  • 3 Advantages / Contributions
  • 4 A convnet for pedestrian detection
  • 5 CityPersons dataset
    • 5.1 Bounding box annotations
    • 5.2 Statistics
    • 5.3 Benchmarking
    • 5.4 Baseline experiments
  • 6 Improve quality using CityPersons
    • 6.1 Generalization across datasets
    • 6.2 Better pre-training improves quality
    • 6.3 Exploiting Cityscapes semantic labels
  • 7 Conclusion(own) / Future work


1 Background and Motivation

行人检测是计算机视觉社区的一个流行的研究主题之一,general object detector 未必对行人检测是最优,作者改进 faster RCNN 以更适配行人检测任务,与此同时基于 Cityscapses 分割数据集提出 CityPersons

2 Related Work

  • Convnets for pedestrian detection.
  • Pedestrian datasets
  • Semantic labels for pedestrian detection

3 Advantages / Contributions

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第2张图片

  • 基于 Cityscapses 分割数据集 introduce CityPersons 行人检测数据集
  • 改进 Faster RCNN,report new state-of-art results on Caltech and KITTI dataset
  • 用 CityPersons 数据集训练出来的模型作为预训练模型有很好的泛化性能
  • 结合 Cityscapses 的分割标签,检测性能会进一步提升

4 A convnet for pedestrian detection

1)Training, testing ( M R O MR^O MRO, M R N MR^N MRN)

log miss-rate (MR) is averaged over the FPPI (false positives per image) range of [ 1 0 − 2 , 1 0 0 ] [10^{−2}, 10^{0}] [102,100] FPPI.

M R O MR^O MRO 表示 original annotation
M R N MR^N MRN 表示 new annotation

2)FasterRCNN

5 个改进
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第3张图片

  • Quantized RPN scales:split the full scale range in 10 quantile bins (equal amount of samples per bin),增加了 anchor 的 scales 个数——配合 spatial ratio,候选区域变多了
  • Input up-scaling,2x
  • Finer feature stride,removing the fourth max-pooling layer from VGG16 reduces the stride to 8 pixels
  • Ignore region handling,training the RPN proposals avoid sampling the ignore regions
  • Solver,SGD->Adam

5 CityPersons dataset

5.1 Bounding box annotations

克服分割标签转检测框时产生的问题(作者说的第二点,分割标签最小外切矩阵应该比较准吧?哈哈,也没有说矩形框的中心就是目标中心啊,水平方向何来 segment centre rather the object centre),看齐 Existing datasets (INRIA, Caltech, KITTI) 的标注格式

CityPersons 采用了 amodal bounding box 打标形式

《Amodal Instance Segmentation》2016
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第4张图片

也即,被遮挡的区域也给你打出来

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第5张图片

1)Fine-grained categories

4 种类型

  • pedestrian (walking, running or standing up)
  • rider (riding bicycles or motorbikes),
  • sitting person,
  • other person (with unusual postures, e.g. stretching).

2)Annotation protocol

如图 2 所示,pedestrian 和 reider 两类 amodal 模式,上顶中下两个点,宽长比 0.41,形成框,sitting person 和 other person 两类 only provide the segment bounding box

fake human 区域(people on posters, statue, mannequin, people’s reflection in mirror or window, etc.)mark them as ignore regions.

遮挡率计算如下

B B − v i s B B − f u l l \frac{BB-vis}{BB-full} BBfullBBvis

3)Annotation tool

pops out one person segment at a time

首先,标注 the fine-grained category

然后,do the full body annotation for pedestrians and riders

But the ignore region annotations have to be done by searching over the whole images

5.2 Statistics

1)Volume
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第6张图片

2)Diversity

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第7张图片
作者的数据集中 identical persons 也即 ID 也很多

provides fine-grained labels
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第8张图片
3)Occlusion

Reasonable 表示遮挡小于 35% 的样本

CityPersons has more occlusion cases
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第9张图片
最常见的 9 种遮挡类型如下:

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第10张图片

5.3 Benchmarking

MR stands for log-average miss rate on the “reasonable” setup (scale [50, ∞], occlusion ratio [0, 0.35]) unless otherwise specified.

cyclists/sitting persons/other persons/ignore regions are not considered

其他类都是来作秀的对吧,哈哈

5.4 Baseline experiments

only use the reasonable subset of pedestrians for training

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第11张图片
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第12张图片
数量级和效果呈对数关系

6 Improve quality using CityPersons

6.1 Generalization across datasets

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第13张图片
CityPersons generalizes better than Caltech and KITTI.

attribute to

  • the size and diversity of the Cityscapes data

  • the quality of the bounding boxes annotations

6.2 Better pre-training improves quality

看看 Caltech 上的效果
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第14张图片
improves more for harder cases

better-aligned detections,IoU 0.5->0.75 反而 Δ M R \Delta MR ΔMR 更多

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第15张图片
领先一手预训练,哈哈哈哈

再看看 KITTI 上的效果
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第16张图片

6.3 Exploiting Cityscapes semantic labels

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第17张图片
FCN-8s 训练 Cityscapes coarse annotations,用来 predict semantic map

concatenate semantic channels with RGB channels and feed them altogether into convnets
【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第18张图片

7 Conclusion(own) / Future work

  • 《Pedestrian Detection: An Evaluation of the State of the Art》

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第19张图片


【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第20张图片


【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第21张图片


【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第22张图片


  • 《Multispectral Pedestrian Detection: Benchmark Dataset and Baseline》(CVPR-2015)
    【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第23张图片

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第24张图片


  • 《Amodal Instance Segmentation》2016
    【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第25张图片

【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第26张图片


【CityPersons】《CityPersons:A Diverse Dataset for Pedestrian Detection》_第27张图片


你可能感兴趣的:(CNN,计算机视觉,深度学习,目标检测)