python中lt方法_Python torch.lt方法代碼示例

本文整理匯總了Python中torch.lt方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.lt方法的具體用法?Python torch.lt怎麽用?Python torch.lt使用的例子?那麽恭喜您, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在模塊torch的用法示例。

在下文中一共展示了torch.lt方法的30個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於我們的係統推薦出更棒的Python代碼示例。

示例1: test_train

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def test_train(self):

self._metric.train()

calls = [[torch.FloatTensor([0.0]), torch.LongTensor([0])],

[torch.FloatTensor([0.0, 0.1, 0.2, 0.3]), torch.LongTensor([0, 1, 2, 3])]]

for i in range(len(self._states)):

self._metric.process(self._states[i])

self.assertEqual(2, len(self._metric_function.call_args_list))

for i in range(len(self._metric_function.call_args_list)):

self.assertTrue(torch.eq(self._metric_function.call_args_list[i][0][0], calls[i][0]).all)

self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[i][0][1], -calls[i][1])), 1e-12).all)

self._metric_function.reset_mock()

self._metric.process_final({})

self.assertEqual(self._metric_function.call_count, 1)

self.assertTrue(torch.eq(self._metric_function.call_args_list[0][0][1], torch.LongTensor([0, 1, 2, 3, 4])).all)

self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[0][0][0], -torch.FloatTensor([0.0, 0.1, 0.2, 0.3, 0.4]))), 1e-12).all)

開發者ID:pytorchbearer,項目名稱:torchbearer,代碼行數:18,

示例2: regenerate_cache

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def regenerate_cache(self):

"""

Resamples the big matrix and resets the counter of the total

number of elements in the returned masks.

"""

low_size = int(self.resolution * self.max_size)

low_pattern = self.rng.uniform(0, 1, size=(low_size, low_size)) * 255

low_pattern = torch.from_numpy(low_pattern.astype('float32'))

pattern = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize(self.max_size, Image.BICUBIC),

transforms.ToTensor(),

])(low_pattern[None])[0]

pattern = torch.lt(pattern, self.density).byte()

self.pattern = pattern.byte()

self.points_used = 0

開發者ID:tigvarts,項目名稱:vaeac,代碼行數:18,

示例3: test_terner_connect_sto_forward

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def test_terner_connect_sto_forward():

x = torch.Tensor([1,0,0.45,-1,-0.9]).view(1,-1)

results = list()

for i in range(1000):

temp_result = TernaryConnectStochastic.apply(x)

# Tensor must have only -1 , 0 , 1 values

assert not torch.any(torch.lt(torch.abs(temp_result-1),1e-8)*torch.lt(torch.abs(temp_result),1e-8))

results.append(temp_result)

result = torch.cat(results,0 )

result = torch.sum(result, 0)/1000

assert equals(

result,

torch.Tensor([1,0,0.45,-1,-0.9]).view(1,-1),

5e-2)

開發者ID:Enderdead,項目名稱:Pytorch_Quantize_impls,代碼行數:19,

示例4: intersectionAndUnion

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def intersectionAndUnion(batch_data, pred, numClass):

(imgs, segs, infos) = batch_data

_, preds = torch.max(pred.data.cpu(), dim=1)

# compute area intersection

intersect = preds.clone()

intersect[torch.ne(preds, segs)] = -1

area_intersect = torch.histc(intersect.float(),

bins=numClass,

min=0,

max=numClass - 1)

# compute area union:

preds[torch.lt(segs, 0)] = -1

area_pred = torch.histc(preds.float(),

bins=numClass,

min=0,

max=numClass - 1)

area_lab = torch.histc(segs.float(),

bins=numClass,

min=0,

max=numClass - 1)

area_union = area_pred + area_lab - area_intersect

return area_intersect, area_union

開發者ID:soeaver,項目名稱:pytorch-priv,代碼行數:27,

示例5: _jit_linear_cg_updates

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def _jit_linear_cg_updates(

result, alpha, residual_inner_prod, eps, beta, residual, precond_residual, mul_storage, is_zero, curr_conjugate_vec

):

# # Update result

# # result_{k} = result_{k-1} + alpha_{k} p_vec_{k-1}

result = torch.addcmul(result, alpha, curr_conjugate_vec, out=result)

# beta_{k} = (precon_residual{k}^T r_vec_{k}) / (precon_residual{k-1}^T r_vec_{k-1})

beta.resize_as_(residual_inner_prod).copy_(residual_inner_prod)

torch.mul(residual, precond_residual, out=mul_storage)

torch.sum(mul_storage, -2, keepdim=True, out=residual_inner_prod)

# Do a safe division here

torch.lt(beta, eps, out=is_zero)

beta.masked_fill_(is_zero, 1)

torch.div(residual_inner_prod, beta, out=beta)

beta.masked_fill_(is_zero, 0)

# Update curr_conjugate_vec

# curr_conjugate_vec_{k} = precon_residual{k} + beta_{k} curr_conjugate_vec_{k-1}

curr_conjugate_vec.mul_(beta).add_(precond_residual)

開發者ID:cornellius-gp,項目名稱:gpytorch,代碼行數:23,

示例6: check_monitor_top_k

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def check_monitor_top_k(self, current):

less_than_k_models = len(self.best_k_models) < self.save_top_k

if less_than_k_models:

return True

if not isinstance(current, torch.Tensor):

rank_zero_warn(

f'{current} is supposed to be a `torch.Tensor`. Saving checkpoint may not work correctly.'

f' HINT: check the value of {self.monitor} in your validation loop', RuntimeWarning

)

current = torch.tensor(current)

monitor_op = {

"min": torch.lt,

"max": torch.gt,

}[self.mode]

return monitor_op(current, self.best_k_models[self.kth_best_model_path])

開發者ID:PyTorchLightning,項目名稱:pytorch-lightning,代碼行數:20,

示例7: reward_ddpg_A

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def reward_ddpg_A(solution, use_cuda):

"""

Count number of consecutively correctly sorted for each sample in minibatch

starting from beginning

Very hard to randomly find enough non-zero samples - reward is very sparse!

solution is FloatTensor of dim [batch,n]

"""

(batch_size, n, m) = solution.size()

n_correctly_sorted = Variable(torch.zeros(batch_size, 1), requires_grad=False)

mask = Variable(torch.ones(batch_size, 1).byte(), requires_grad=False)

if use_cuda:

n_correctly_sorted = n_correctly_sorted.cuda()

mask = mask.cuda()

for i in range(1, m):

res = torch.lt(solution[:,:,i-1], solution[:,:,i])

mask.data &= res.data

n_correctly_sorted[mask] += 1

return torch.div(n_correctly_sorted, m - 1)

開發者ID:pemami4911,項目名稱:sinkhorn-policy-gradient.pytorch,代碼行數:24,

示例8: reward_ddpg_B

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def reward_ddpg_B(solution, use_cuda):

"""

Count number of (nonconsecutively) correctly sorted starting from beginning

Tends to converge to [0,2,4,6,8,1,3,5,7,9]

solution is FloatTensor of dim [batch,n]

"""

(batch_size, n, m) = solution.size()

n_correctly_sorted = Variable(torch.zeros(batch_size, 1), requires_grad=False)

if use_cuda:

n_correctly_sorted = n_correctly_sorted.cuda()

for i in range(1, m):

res = torch.lt(solution[:,:,i-1], solution[:,:,i])

n_correctly_sorted += res.float()

return torch.div(n_correctly_sorted, m - 1)

開發者ID:pemami4911,項目名稱:sinkhorn-policy-gradient.pytorch,代碼行數:21,

示例9: get_morph

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def get_morph(batch):

#Not very nice but we do not have access to value comming from opt.gpuid command line parameter here.

use_cuda = batch.src[0].is_cuda

# morph_index = batch.morph.data.transpose(0, 1) # [ seqLen x batch_size ] ==> [ batch_size x seqLen ]

# morph_voc = batch.dataset.fields['morph'].vocab.stoi

morph_index = batch.morph.view((batch.src[0].data.size()[0], 6, batch.src[0].data.size()[1]))

morph_index = morph_index.permute(2, 0, 1).contiguous()

# morph_index = torch.LongTensor(morph_index)

morph_mask = torch.lt(torch.eq(morph_index, 1), 1).float()

# morph_index = autograd.Variable(morph_index)

# morph_mask = autograd.Variable(torch.FloatTensor(morph_mask), requires_grad=False)

if use_cuda:

morph_index = morph_index.cuda()

morph_mask = morph_mask.cuda()

return morph_index, morph_mask

開發者ID:diegma,項目名稱:graph-2-text,代碼行數:25,代碼來源:IO.py

示例10: wrapper_gmask

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def wrapper_gmask(opt):

# batchsize should be 1 for mask_global

mask_global = torch.ByteTensor(1, 1, \

opt.fineSize, opt.fineSize)

res = 0.06 # the lower it is, the more continuous the output will be. 0.01 is too small and 0.1 is too large

density = 0.25

MAX_SIZE = 350

maxPartition = 30

low_pattern = torch.rand(1, 1, int(res * MAX_SIZE), int(res * MAX_SIZE)).mul(255)

pattern = F.interpolate(low_pattern, (MAX_SIZE, MAX_SIZE), mode='bilinear').detach()

low_pattern = None

pattern.div_(255)

pattern = torch.lt(pattern, density).byte() # 25% 1s and 75% 0s

pattern = torch.squeeze(pattern).byte()

gMask_opts = {}

gMask_opts['pattern'] = pattern

gMask_opts['MAX_SIZE'] = MAX_SIZE

gMask_opts['fineSize'] = opt.fineSize

gMask_opts['maxPartition'] = maxPartition

gMask_opts['mask_global'] = mask_global

return create_gMask(gMask_opts) # create an initial random mask.

開發者ID:Zhaoyi-Yan,項目名稱:Shift-Net_pytorch,代碼行數:25,

示例11: forward

​點讚 6

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def forward(self, words, frequent_tuning=False):

if frequent_tuning and self.training:

padding_mask = words.eq(0).long()

# Fine-tuning - N the most frequent

fine_tune_mask = torch.lt(words, self.threshold_index) * padding_mask.eq(

0

) # < threshold_index

fine_tune_words = words * fine_tune_mask.long()

fine_tune_embedded = self.fine_tune_word_embedding(fine_tune_words)

fine_tune_embedded = f.masked_zero(fine_tune_embedded, fine_tune_mask)

# Fixed - under N frequent

fixed_mask = torch.ge(words, self.threshold_index) # >= threshold_index

fixed_embedeed = self.fixed_word_embedding(words).detach() # Fixed

fixed_embedeed = f.masked_zero(fixed_embedeed, fixed_mask)

embedded_words = fine_tune_embedded + fixed_embedeed

else:

embedded_words = self.fixed_word_embedding(words)

return self.dropout(embedded_words)

開發者ID:naver,項目名稱:claf,代碼行數:27,

示例12: maxOfTwo

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def maxOfTwo(x, y):

z = x.clone()

maskYLarger = torch.lt(x, y)

z[maskYLarger.detach()] = y[maskYLarger.detach()]

return z

開發者ID:JunjH,項目名稱:Visualizing-CNNs-for-monocular-depth-estimation,代碼行數:7,

示例13: forward

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def forward(self, estDisp, gtDisp):

if not torch.is_tensor(gtDisp):

raise TypeError('ground truth disparity map is expected to be tensor, got {}'.format(type(gtDisp)))

if not torch.is_tensor(estDisp):

raise TypeError('estimated disparity map is expected to be tensor, got {}'.format(type(estDisp)))

assert estDisp.shape == gtDisp.shape

if gtDisp.dim() == 2: # single image H x W

h, w = gtDisp.size(0), gtDisp.size(1)

gtDisp = gtDisp.view(1, 1, h, w)

estDisp = estDisp.view(1, 1, h, w)

if gtDisp.dim() == 3: # multi image B x H x W

b, h, w = gtDisp.size(0), gtDisp.size(1), gtDisp.size(2)

gtDisp = gtDisp.view(b, 1, h, w)

estDisp = estDisp.view(b, 1, h, w)

if gtDisp.dim() == 4:

if gtDisp.size(1) == 1: # mult image B x 1 x H x W

self.gtDisp = gtDisp

self.estDisp = estDisp

else:

raise ValueError('2nd dimension size should be 1, got {}'.format(gtDisp.size(1)))

confidence_gt_label = torch.lt(torch.abs(self.estDisp - self.gtDisp), self.theta).type_as(self.gtDisp)

return confidence_gt_label

開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:31,

示例14: getProb

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def getProb(self):

# |d - d{gt}| < variance, [BatchSize, maxDisp, Height, Width]

probability = torch.lt(torch.abs(self.disp_sample - self.gtDisp), self.variance).type_as(self.gtDisp)

return probability

開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:7,

示例15: test_validate

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def test_validate(self):

self._metric.eval()

for i in range(len(self._states)):

self._metric.process(self._states[i])

self._metric_function.assert_not_called()

self._metric.process_final_validate({})

self.assertEqual(self._metric_function.call_count, 1)

self.assertTrue(torch.eq(self._metric_function.call_args_list[0][0][1], torch.LongTensor([0, 1, 2, 3, 4])).all)

self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[0][0][0], -torch.FloatTensor([0.0, 0.1, 0.2, 0.3, 0.4]))), 1e-12).all)

開發者ID:pytorchbearer,項目名稱:torchbearer,代碼行數:12,

示例16: log1mexp

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def log1mexp(U, eps=1e-3):

"""

Compute log(1 - exp(u)) for u <= 0.

"""

res = torch.log1p(-torch.exp(U))

# |U| << 1 requires care for numerical stability:

# 1 - exp(U) = -U + o(U)

small = torch.lt(U.abs(), eps)

res[small] = torch.log(-U[small])

return res

開發者ID:oval-group,項目名稱:smooth-topk,代碼行數:14,

示例17: prune_vanilla_elementwise

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def prune_vanilla_elementwise(param, sparsity, fn_importance=lambda x: x.abs()):

"""

element-wise vanilla pruning

:param param: torch.(cuda.)Tensor, weight of conv/fc layer

:param sparsity: float, pruning sparsity

:param fn_importance: function, inputs 'param' and returns the importance of

each position in 'param',

default=lambda x: x.abs()

:return:

torch.(cuda.)ByteTensor, mask for zeros

"""

sparsity = min(max(0.0, sparsity), 1.0)

if sparsity == 1.0:

return torch.zeros_like(param).byte()

num_el = param.numel()

importance = fn_importance(param)

num_pruned = int(math.ceil(num_el * sparsity))

num_stayed = num_el - num_pruned

if sparsity <= 0.5:

_, topk_indices = torch.topk(importance.view(num_el), k=num_pruned,

dim=0, largest=False, sorted=False)

mask = torch.zeros_like(param).byte()

param.view(num_el).index_fill_(0, topk_indices, 0)

mask.view(num_el).index_fill_(0, topk_indices, 1)

else:

thr = torch.min(torch.topk(importance.view(num_el), k=num_stayed,

dim=0, largest=True, sorted=False)[0])

mask = torch.lt(importance, thr)

param.masked_fill_(mask, 0)

return mask

開發者ID:synxlin,項目名稱:nn-compression,代碼行數:32,

示例18: forward

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def forward(self, pos_context, pos_path, neg_context, neg_path):

pos_context_embedding = torch.sum(self.word_embeddings(pos_context), dim=1, keepdim=True)

pos_path_embedding = self.context_embeddings(pos_path)

pos_score = torch.bmm(pos_context_embedding, pos_path_embedding.transpose(2, 1)).squeeze()

neg_context_embedding = torch.sum(self.word_embeddings(neg_context), dim=1, keepdim=True)

neg_path_embedding = self.context_embeddings(neg_path)

neg_score = torch.bmm(neg_context_embedding, neg_path_embedding.transpose(2, 1)).squeeze()

pos_sigmoid_score = torch.lt(torch.sigmoid(pos_score), 0.5)

neg_sigmoid_score = torch.gt(torch.sigmoid(neg_score), 0.5)

sigmoid_score = torch.cat((pos_sigmoid_score, neg_sigmoid_score))

sigmoid_score = torch.sum(sigmoid_score, dim=0).item() / sigmoid_score.size(0)

return sigmoid_score

開發者ID:smilelight,項目名稱:lightNLP,代碼行數:14,

示例19: forward

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def forward(self, pos_target, pos_path, neg_target, neg_path):

pos_target_embedding = torch.sum(self.word_embeddings(pos_target), dim=1, keepdim=True)

pos_path_embedding = self.context_embeddings(pos_path)

pos_score = torch.bmm(pos_target_embedding, pos_path_embedding.transpose(2, 1)).squeeze()

neg_target_embedding = torch.sum(self.word_embeddings(neg_target), dim=1, keepdim=True)

neg_path_embedding = self.context_embeddings(neg_path)

neg_score = torch.bmm(neg_target_embedding, neg_path_embedding.transpose(2, 1)).squeeze()

pos_sigmoid_score = torch.lt(torch.sigmoid(pos_score), 0.5)

neg_sigmoid_score = torch.gt(torch.sigmoid(neg_score), 0.5)

sigmoid_score = torch.cat((pos_sigmoid_score, neg_sigmoid_score))

sigmoid_score = torch.sum(sigmoid_score, dim=0).item() / sigmoid_score.size(0)

return sigmoid_score

開發者ID:smilelight,項目名稱:lightNLP,代碼行數:14,

示例20: forward

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def forward(self, x, routing_weights):

x_orig = x

B, C, H, W = x.shape

weight = torch.matmul(routing_weights, self.weight) # (Expert x out x in x 3x3) --> (B x out x in x 3x3)

new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size

weight = weight.view(new_weight_shape) # (B*out x in x 3 x 3)

bias = None

if self.bias is not None:

bias = torch.matmul(routing_weights, self.bias)

bias = bias.view(B * self.out_channels)

# move batch elements with channels so each batch element can be efficiently convolved with separate kernel

x = x.view(1, B * C, H, W)

if self.dynamic_padding:

out = conv2d_same(

x, weight, bias, stride=self.stride, padding=self.padding,

dilation=self.dilation, groups=self.groups * B)

else:

out = F.conv2d(

x, weight, bias, stride=self.stride, padding=self.padding,

dilation=self.dilation, groups=self.groups * B)

# out : (1 x B*out x ...)

out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])

# out2 = self.forward_legacy(x_orig, routing_weights)

# lt = torch.lt(torch.abs(torch.add(out, -out2)), 1e-8)

# assert torch.all(lt), torch.abs(torch.add(out, -out2))[lt]

# print('checked')

return out

開發者ID:kakaobrain,項目名稱:fast-autoaugment,代碼行數:31,

示例21: logits_mask

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def logits_mask(coords, logits, num_points_per_object):

"""

Use logits to sample points

:param coords: coords of points, FloatTensor[B, 3, N]

:param logits: binary classification logits, FloatTensor[B, 2, N]

:param num_points_per_object: M, #points per object after masking, int

:return:

selected_coords: FloatTensor[B, 3, M]

masked_coords_mean: mean coords of selected points, FloatTensor[B, 3]

mask: mask to select points, BoolTensor[B, N]

"""

batch_size, _, num_points = coords.shape

mask = torch.lt(logits[:, 0, :], logits[:, 1, :]) # [B, N]

num_candidates = torch.sum(mask, dim=-1, keepdim=True) # [B, 1]

masked_coords = coords * mask.view(batch_size, 1, num_points) # [B, C, N]

masked_coords_mean = torch.sum(masked_coords, dim=-1) / torch.max(num_candidates,

torch.ones_like(num_candidates)).float() # [B, C]

selected_indices = torch.zeros((batch_size, num_points_per_object), device=coords.device, dtype=torch.int32)

for i in range(batch_size):

current_mask = mask[i] # [N]

current_candidates = current_mask.nonzero().view(-1)

current_num_candidates = current_candidates.numel()

if current_num_candidates >= num_points_per_object:

choices = np.random.choice(current_num_candidates, num_points_per_object, replace=False)

selected_indices[i] = current_candidates[choices]

elif current_num_candidates > 0:

choices = np.concatenate([

np.arange(current_num_candidates).repeat(num_points_per_object // current_num_candidates),

np.random.choice(current_num_candidates, num_points_per_object % current_num_candidates, replace=False)

])

np.random.shuffle(choices)

selected_indices[i] = current_candidates[choices]

selected_coords = gather(masked_coords - masked_coords_mean.view(batch_size, -1, 1), selected_indices)

return selected_coords, masked_coords_mean, mask

開發者ID:mit-han-lab,項目名稱:pvcnn,代碼行數:36,

示例22: equals

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def equals(a, b, epsilon=1e-12):

return torch.all(torch.lt( torch.abs(a-b), epsilon ))

開發者ID:Enderdead,項目名稱:Pytorch_Quantize_impls,代碼行數:4,

示例23: sequence_mask

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def sequence_mask(sequence_length, max_len=None):

if max_len is None:

max_len = sequence_length.data.max()

batch_size = sequence_length.size(0)

seq_range = torch.arange(0, max_len).long()

seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)

seq_range_expand = seq_range_expand.clone().detach()

if sequence_length.is_cuda:

seq_range_expand = seq_range_expand.cuda()

seq_length_expand = (sequence_length.unsqueeze(1)

.expand_as(seq_range_expand))

return torch.lt(seq_range_expand, seq_length_expand)

開發者ID:Great-Li-Xin,項目名稱:dumb-chatbot,代碼行數:14,

示例24: check_monitor_top_k

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def check_monitor_top_k(self, current):

# If we don't have enough models

if len(self.best_k_models) < self.save_top_k:

return True

# Convert to torch if necessary

if not isinstance(current, torch.Tensor):

current = torch.tensor(current)

# Get monitoring operation

monitor_op = {

"min": torch.lt,

"max": torch.gt,

}[self.mode]

# Compare and return

return monitor_op(current, self.best_k_models[self.kth_best_model])

開發者ID:TRI-ML,項目名稱:packnet-sfm,代碼行數:16,

示例25: get_unsupervised_loss

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def get_unsupervised_loss(self, examples):

samples, sample_scores, enc_states = self.infer(examples)

reconstruction_scores = self.decoder.score(samples)

# compute prior probability

prior_scores = self.prior([e.tgt_code for e in samples])

if isinstance(self.prior, UniformPrior):

prior_scores = Variable(sample_scores.data.new(prior_scores))

kl_term = self.args.alpha * (sample_scores - prior_scores)

raw_learning_signal = reconstruction_scores - kl_term

baseline = self.baseline(samples, enc_states)

learning_signal = raw_learning_signal.detach() - baseline

# clip learning signal

if self.args.clip_learning_signal is not None:

mask = torch.lt(learning_signal, self.args.clip_learning_signal).float()

clipped_learning_signal = learning_signal * (1. - mask) + mask * self.args.clip_learning_signal

else:

clipped_learning_signal = learning_signal

encoder_loss = -clipped_learning_signal.detach() * sample_scores

decoder_loss = -reconstruction_scores

# compute baseline loss

baseline_loss = learning_signal ** 2

meta_data = {'samples': samples,

'reconstruction_scores': reconstruction_scores,

'encoding_scores': sample_scores,

'raw_learning_signal': raw_learning_signal,

'learning_signal': learning_signal,

'baseline': baseline,

'kl_term': kl_term,

'prior': prior_scores}

return encoder_loss, decoder_loss, baseline_loss, meta_data

開發者ID:pcyin,項目名稱:tranX,代碼行數:40,

示例26: assertTensorAlmostEqual

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def assertTensorAlmostEqual(self, expected, actual):

diff = torch.all(

torch.lt(torch.abs(torch.add(expected, -actual)), 1e-4))

if not diff:

self.fail("Tensors didn't match but were supposed to {} vs"

" {}".format(expected, actual))

開發者ID:joeynmt,項目名稱:joeynmt,代碼行數:8,

示例27: dist_acc

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def dist_acc(dists, thr=0.5):

"""

Return percentage below threshold while ignoring values with a -1

"""

dist_cal = torch.ne(dists, -1)

num_dist_cal = dist_cal.sum()

if num_dist_cal > 0:

return torch.lt(dists[dist_cal], thr).float().sum() / num_dist_cal

else:

return -1

開發者ID:stefanopini,項目名稱:simple-HRNet,代碼行數:12,

示例28: lt

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def lt(t1, t2):

"""

Element-wise rich less than comparison between values from operand t1 with respect to values of

operand t2 (i.e. t1 < t2), not commutative.

Takes the first and second operand (scalar or tensor) whose elements are to be compared as argument.

Parameters

----------

t1: tensor or scalar

The first operand to be compared less than second operand

t2: tensor or scalar

The second operand to be compared greater than first operand

Returns

-------

result: ht.DNDarray

A uint8-tensor holding 1 for all elements in which values of t1 are less than values of t2,

0 for all other elements

Examples

-------

>>> import heat as ht

>>> T1 = ht.float32([[1, 2],[3, 4]])

>>> ht.lt(T1, 3.0)

tensor([[1, 1],

[0, 0]], dtype=torch.uint8)

>>> T2 = ht.float32([[2, 2], [2, 2]])

>>> ht.lt(T1, T2)

tensor([[1, 0],

[0, 0]], dtype=torch.uint8)

"""

return operations.__binary_op(torch.lt, t1, t2)

開發者ID:helmholtz-analytics,項目名稱:heat,代碼行數:35,

示例29: compute

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def compute(self, left, right) -> torch.Tensor:

return torch.lt(left, right)

開發者ID:Heerozh,項目名稱:spectre,代碼行數:4,

示例30: __init__

​點讚 5

# 需要導入模塊: import torch [as 別名]

# 或者: from torch import lt [as 別名]

def __init__(self, monitor: str = 'val_loss', min_delta: float = 0.0, patience: int = 3,

verbose: bool = False, mode: str = 'auto', strict: bool = True):

super().__init__()

self.monitor = monitor

self.patience = patience

self.verbose = verbose

self.strict = strict

self.min_delta = min_delta

self.wait_count = 0

self.stopped_epoch = 0

self.mode = mode

if mode not in self.mode_dict:

if self.verbose > 0:

log.info(f'EarlyStopping mode {mode} is unknown, fallback to auto mode.')

self.mode = 'auto'

if self.mode == 'auto':

if self.monitor == 'acc':

self.mode = 'max'

else:

self.mode = 'min'

if self.verbose > 0:

log.info(f'EarlyStopping mode set to {self.mode} for monitoring {self.monitor}.')

self.min_delta *= 1 if self.monitor_op == torch.gt else -1

self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf

開發者ID:PyTorchLightning,項目名稱:pytorch-lightning,代碼行數:29,

注:本文中的torch.lt方法示例整理自Github/MSDocs等源碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。

你可能感兴趣的:(python中lt方法)