案例分析——详解KANO模型

今天阿G将会通过王者荣耀这个实际例子,和大家聊聊如何运用KANO模型。

什么是KANO模型?在什么场景下使用?如何使用?

一、定义

KANO模型,又称为狩野模型,是东京理工大学教授狩野纪昭(Noriaki Kano)针对用户需求分类优先级排序发明的工具,体现产品功能和用户满意度之间的非线性关系。

而由此衍生出来的KANO模型分析方法,是狩野纪昭教授基于KANO模型对用户需求的分析原理,开发的一套结构型问卷和分析方法。

主要是通过标准化问卷调研的调研结果对各因素属性做归类,解决产品功能的优先级排序问题,以提高用户满意度。

二、适用场景

  • 确认需求是否存在

  • 评估需求优先级

  • 减少无用功

  • 打造爆款的传播要素(病毒性K值的设计)

三、使用好处

  • 适用场景丰富

  • 有效的量化模型

四、分类

根据不同类型的用户需求与用户满意度之间的关系,狩野教授将产品需求属性分为5大类:

  • 必备属性

    产品提供此类型需求,用户满意度不会提升

    产品不提供此类型需求,用户满意度会大幅下降

  • 期望属性

    产品提供此类型需求,用户满意度会提升

    产品不提供此类型需求,用户满意度会下降

  • 魅力属性(用户意想不到的需求)

    产品提供此类型需求,用户满意度会大幅提升

    产品不提供此类型需求,用户满意度不会下降

  • 反向属性(用户不需要的需求)

    产品提供此类型需求,用户满意度会大幅下降

  • 无差异属性(用户不会在意的需求)

    无论产品是否提供此类型需求,用户满意度都不会有所改变

以腾讯的《王者荣耀》举例说明。

玩家可以正常进入游戏就属于必备属性,试想一下,如果连游戏都进不去,还何谈满意度呢?

相比于Dota、LOL需要回城才能买装备的限制,玩家在王者峡谷每一处都可以随时购买装备,同时英雄技能施放又极其简单,最大限度避开了手机对于MOBA(多人在线对战)游戏的限制。

一般而言,能引起玩家强烈情感共鸣的设计就是魅力属性,例如那句经典的“猥琐发育,别浪!”真的是在很多时候都能表达玩家深深的无奈。

王者荣耀的反向属性其实也比较明显,每次登录游戏都会有好多活动弹窗,关了一个又一个,没完没了。

最后一个无差异属性,王者荣耀每过一段时间都会提醒付费用户充值来维持贵族等级,这类设计纯粹是为了引导消费,所以属于无差异属性。

五、需求开发原则

当几种类型的需求都在需求池里面,我们应该遵循以下原则进行开发排期:

  • 必备属性:留足资源,最优先满足

  • 期望属性:排在必备之后,先做性价比更高的

  • 魅力属性:尽力挖掘,先做成本低的

  • 反向属性:避免做和商业模式无关的,同时要权衡多方利益

  • 无差异属性:不做

要特别注意2点

1. 我们说一个需求属于某种属性,是指针对某一类特定用户

例如在王者荣耀中,无限制地向所有用户推送广告活动,对于玩家来说就是反向属性的需求,而对于广告主(例如虎牙等直播平台)就是必备属性。

2. 需求属于哪个属性,是有时效性的

例如在智能手机还没普及的年代,能在手机上播放视频就是一个魅力属性。而现在,能在手机上播放3D电影才是。所以当我们说一个需求属于「无差异需求」时,应该说的是「现阶段」不做。

六、使用步骤

1. 准备分析

深入地了解业务、了解用户,从用户角度认识产品或服务当前哪些地方需要改进。

2. 问卷调查

在设计问卷时,尽量的清晰易懂、语言尽量简单具体,避免产生歧义。同时,可以在问卷中加入简短且明显的提示或说明,方便用户顺利填答。(问卷设计也是一门学问,下次再单独写一篇文章讲讲)

问卷划分为2个维度:提供时的满意程度、不提供时的满意程度。

满意程度一般分为5个,因为人的满意程度往往是渐变,而非突变的。其程度的描述可随制定者修改,如「很喜欢、还不错/还可以、无所谓/理应如此、勉强接受/凑活、很不喜欢」等等。

问卷的形式也比较灵活,常用表格(打钩即可)或者选择题。

如果王者荣耀上线同城对战模式,你的评价是?

A. 我很喜欢 B. 理应如此 C. 无所谓 D. 勉强接受 E. 我不喜欢

如果王者荣耀没有同城对战模式,你的评价是?

A. 我很喜欢 B. 理应如此 C. 无所谓 D. 勉强接受 E. 我不喜欢

3. 二维属性分类

在整理问卷调查结果时,可以清洗掉个别明显胡乱回答的问卷,例如全部问题都选满意度高或满意度低的。再根据官方的评价结果分类对照表将需求进行分类。

注意,按照概念,反向属性应该是提供程度和用户满意度成反比,也就是说产品提供了用户就不满意,所以上表只有左下角是明确的「反向属性」,有几个反向属性可以考虑转为「可疑结果」。

因为满意程度本身就很难衡量,所以在实际工作中,不应该盲目地套用方法论或模型,应该根据自己的产品、公司、地域、用户群等等因素做调整。

我之前做SCRM时,目标用户是自家的销售,做完详细的用户调研和业务调研之后,我把上面的表整理为

可以看到改动挺大的,但我觉得适合自己的才是最重要的。当然前提是得深入了解用户和业务情况。

  1. 量化结果

在实际工作中,我们会调研很多个用户,对于同一个问题,会产生无数个答案。此时就可以根据下面这个原则来确定,需求到底属于哪个属性。

计算不同属性的比例之和,总数值最高的就是这个需求的属性。

假如我们调研王者荣耀的“同城对战模式”,回收了100份有效问卷,数值分布如下

必备属性(M):17,17.00%

期望属性(O):3,3.00%

魅力属性(A):10,10.00%

无差异属性(I):26,26.00%

反向属性(R):36,36.00%

可疑结果(Q):8,8.00%

由以上结果可得,回收的这100份有效问卷,大部分人认为“同城对战模式”是一个反向属性的功能,还有很大一部分人认为,这是一个具有无差异属性的功能,所以这个功能现在不应该做。

这时候你可能会问,如果有几个属性的数值很接近甚至相同,怎么办?

出现这种情况,一般而言我们需要再扩大调研的用户数量级,比如说刚才是100人,我们可以再调研500人,把两次结果相加起来做运算。

七、Better-Worse系数

我们还可以再借助一个工具:Better-Worse系数,看此需求对增加满意度或降低满意度的影响程度。

Better:增加某功能的体验改善程度,数值通常是正的,越大表示完成需求对提升用户满意度的效果越显著。

公式为:SI = (A+O)/(A+O+M+I)

即 SI = (魅力属性+期望属性)/(魅力属性+期望属性+必备属性+无差异属性)

Worse:去掉某功能的体验改善程度,数值通常是负的,绝对值越大表示完成需求对降低用户满意度的效果越显著。

公式为:DSI = -1*(M+O)/(A+O+M+I)

即 DSI = -1*(必备属性+期望属性)/(魅力属性+期望属性+必备属性+无差异属性)

将第六点回收的100份有效问卷结果代入公式,可得

SI = (10+3)/(10+3+17+26) ≈ 23.21%

DSI = -1*(17+3)/(10+3+17+26)≈ -35.71%

结论也和上面的一致,这是一个具有无差异属性的功能,所以这个功能现在不应该做。

这个工具更多的用途是在:同时对多个需求进行优先级排序。

例如王者荣耀现在想做5个功能:功能1-5

步骤1:通过问卷调研和Better-Worse系数的计算,得出一下几个数值

步骤2:用SI平均值和DSI平均值的绝对值作为坐标原点,横****轴是Worse(DSI)的绝对值,纵轴是Better(SI),绘制以下二维坐标

第一象限Better值高、Worse绝对值也高,表示提供此类型功能时,用户满意度会提升。因此落在这个象限的需求都是期望属性。

第二象限Better值高、Worse绝对值低,表示提供此类型功能时,用户满意度会大幅提升。因此落在这个象限的需求都是魅力属性。

第三象限Better值低、Worse绝对值也低,表示提不提供有没有此类型功能,用户满意度都不会有太大变化,因此落在这个象限的需求都是无差异属性。

第四象限Better低,Worse绝对值高,表示不提供此类型功能时,用户满意度会大幅下降,因此落在这个象限的需求都是必备属性。

通过上面几个步骤,我们可以知道上面5个功能的属性和开发原则:

  1. 功能1、功能2属于无差异属性

  2. 功能3、功能5属于魅力属性

  3. 功能4属于必备属性

所以功能1-5的优先级排序结论就是:先做功能4,在功能3和功能5中选择成本低的做,功能1和功能2现阶段不做。

至此关于KANO模型,阿G也和大家聊得差不多了。

如果你有什么好的想法或者不同的看法,欢迎随时到公众号「阿G聊产品」一起讨论,学习。

你可能感兴趣的:(案例分析——详解KANO模型)