整体来看,kafka架构中包含四大组件:生产者、消费者、kafka集群、zookeeper集群
1、broker:
kafka集群包含一个或多个服务器,每个服务器节点称为一个broker。
2、topic:
每条发布到kafka集群的消息都有一个类别,这个类别称为topic,其实就是将消息按照topic来分类,topic就是逻辑上的分类,同一个topic的数据既可在同一个broker上也可以在不同的broker节点上
3、partition:
分区,每个topic被物理划分为一个或多个分区,每个分区在物理上对应一个文件夹,该文件夹里面存储了这个分区的所有消息和索引文件。在创建topic时可以指定partition数量,生产者将消息发送到topic时,消息会根据分区策略追加到分区文件的末尾,属于顺序写磁盘,因此效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证)
上面提到分区策略,所谓分区策略就是决定生产者将消息发送到哪个分区的算法?
Kafka 为我们提供了默认的分区策略,同时它也支持自定义分区策略。
kafka允许为每条消息设置一个key,一旦消息被定义了 Key,
那么就可以保证同一个 Key 的所有消息都进入到相同的分区,
这种策略属于自定义策略的一种,被称作"按消息key保存策略",或Key-ordering 策略。
同一主题topic的多个partition分区可以部署在不同的机器上,以此来实现kafka的伸缩性。同一个partition的数据是有序的,但topic主题下多个partition之间在消费数据时不能保证有序性,在需要严格保证消息顺序性的场景下,可以将partition数设为1,但是这种做法的缺点就是降低吞吐量,一般来说,只需要保证每个分区的有序性,再对消息设置key来保证相同的key消息落入同一个分区,就可以满足绝大多数场景。
4、offset:
partition中的每条消息都被标记了一个序号,这个序号表示消息在partition中的偏移量,称为offset,每一条消息在partition都有唯一的offset,消费者可以通过指定offset来指定要消费的消息。
正常情况下,消费者在消费完一条消息后会递增offset,准备去消费下一条消息,但也可以将offset设成一个较小的值,重新消费一些消费过的消息,可见offset是由consumer控制的,consumer想消费哪一条消息就消费哪一条消息,所以kafka broker是无状态的,它不需要标记哪些消息被消费过。
5、producer:
生产者,生产者发送消息到指定的topic下,消息再根据分配规则append到某个partition的末尾。
6、consumer:
消费者,消费者从topic中消费数据。
7、consumer group:
消费者组,每个consumer属于一个特定的consumer group,可为每个consumer指定consumer group,若不指定则属于默认group。
同一topic的一条消息只能被同一个consumer group内的一个consumer消费,但多个consumer group可同时消费这一消息。这也是kafka用来实现一个topic消息的广播和单播的手段,如果需要实现广播,一个consumer group内只放一个消费者即可,要实现单播,将所有的消费者放到同一个consumer group即可。
用consumer group还可以将consumer进行自由的分组而不需要多次发送消息到不同的topic。
8、leader:
每个partition有多个副本,其中有且仅有一个作为leader,leader会负责所有的客户端读写操作。
9、follower:
follower不对外提供服务,只与leader保持数据同步,如果leader失效,则选举一个follower来充当新的leader。当follower与leader挂掉、卡住或者同步太慢,leader会把这个follower从ISR列表中删除,重新创建一个follower。
10、rebalance:
同一个consumer group下有多个消费者互相协调消费工作,我们这样想,一个topic分为多个分区,一个consumer group里面的所有消费者合作,一起去消费所订阅的某个topic下的所有分区(每个消费者消费部分分区),kafka会将该topic下的所有分区均匀的分配给consumer group下的每个消费者
Rebalance表示"重平衡",consumer group内某个消费者挂掉后,其他消费者自动重新分配订阅主题分区的过程,是 Kafka 消费者端实现高可用的重要手段。如下图Consumer Group A中的C2挂掉,C1会接收P1和P2,以达到重新平衡。同样的,当有新消费者加入consumer group,也会触发重平衡操作。
5.对kafka架构的几点解释:
1.一个典型的kafka集群中包含若干producer,若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干consumer group,以及一个zookeeper集群。kafka通过zookeeper协调管理kafka集群,选举分区leader,以及在consumer group发生变化时进行rebalance。
2、kafka的topic被划分为一个或多个分区,多个分区可以分布在一个或多个broker节点上,同时为了故障容错,每个分区都会复制多个副本,分别位于不同的broker节点,这些分区副本中(不管是leader还是follower都称为分区副本),一个分区副本会作为leader,其余的分区副本作为follower。
leader负责所有的客户端读写操作,follower不对外提供服务,仅仅从leader上同步数据,当leader出现故障时,其中的一个follower会顶替成为leader,继续对外提供服务。
3、对于传统的MQ而言,已经被消费的消息会从队列中删除,但在Kafka中被消费的消息也不会立马删除,在kafka的server.propertise配置文件中定义了数据的保存时间,当文件到设定的保存时间时才会删除。
# 数据的保存时间(单位:小时,默认为7天)
log.retention.hours=168
因为Kafka读取消息的时间复杂度为O(1),与文件大小无关,所以这里删除过期文件与提高Kafka性能并没有关系,所以选择怎样的删除策略应该考虑磁盘以及具体的需求。