Java中ElasticSearch的各种查询(普通,模糊,前缀,高亮,聚合,范围)

1、term&terms查询

1.1 term查询(分页)

term的查询是代表完全匹配,搜索之前不会对你搜索的关键字进行分词,对你的关键字去文档分词库中去匹配内容。

ElasticSearch查询语法:

# term查询
POST /sms-logs-index/sms-logs-type/_search
{
  "from": 0,     
  "size": 5,	  
  "query": {
    "term": {
      "province": {
        "value": "北京"
      }
    }
  }
}

查询结果中max_score匹配度越高,数据的排名就越靠前

// Java代码实现方式
@Test
public void termQuery() throws IOException {
    //1. 创建Request对象
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    builder.from(0);
    builder.size(5);
    builder.query(QueryBuilders.termQuery("province","北京"));

    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取到_source中的数据,并展示
    for (SearchHit hit : resp.getHits().getHits()) {
        Map result = hit.getSourceAsMap();
        System.out.println(result);
    }
}

1.2 terms查询

terms和term的查询机制是一样的,都不会将指定的查询关键字进行分词,直接去分词库中匹配,找到相应文档内容。

terms是在针对一个字段包含多个值的时候使用。

term:where province = 北京;

terms:where province = 北京 or province = ?or province = ?

# terms查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "terms": {
      "province": [
        "北京",
        "山西",
        "武汉"
      ]
    }
  }
}

## 返回指定的列
POST /sms-logs-index/sms-logs-type/_search
{
  "_source": ["province","fee"], 
  "query": {
    "terms": {
      "province": [
        "北京",
        "山西",
        "武汉"
      ]
    }
  }
}
// Java实现
@Test
public void termsQuery() throws IOException {
    //1. 创建request
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 封装查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    builder.query(QueryBuilders.termsQuery("province","北京","山西"));

    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出_source
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

2 、match查询

match查询属于高级查询,他会根据你查询的字段类型不一样,采用不同的查询方式,更加灵活多变↓

  • 查询的是日期或者是数值的话,他会将你基于的字符串查询内容转换为日期或者数值对待。

  • 如果查询的内容是一个不能被分词的内容(keyword),match查询不会对你指定的查询关键字进行分词。

  • 如果查询的内容时一个可以被分词的内容(text),match会将你指定的查询内容根据一定的方式去分词,去分词库中匹配指定的内容。

match查询,实际底层就是多个term查询,将多个term查询的结果给你封装到了一起而已。

2.1 match_all查询

查询全部内容,不指定任何查询条件。

# match_all查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "match_all": {}
  }
}

java代码实现方式

//  java代码实现
@Test
public void matchAllQuery() throws IOException {
    //1. 创建Request
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    builder.query(QueryBuilders.matchAllQuery());
    builder.size(20);           // ES默认只查询10条数据,如果想查询更多,添加size
    
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
    
    System.out.println(resp.getHits().getHits().length);
}

2.2 match查询

指定一个Field作为筛选的条件

# match查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "match": {
      "smsContent": "收货安装"
    }
  }
}

java代码实现方式

@Test
public void matchQuery() throws IOException {
    //1. 创建Request
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //-----------------------------------------------
    builder.query(QueryBuilders.matchQuery("smsContent","收货安装"));
    //-----------------------------------------------
    request.source(builder);
    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

2.3 match查询,追加操作,或者,并且

基于一个Field匹配的内容,采用and或者or的方式连接

# 布尔match查询,内容既包含中国也包含健康
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "match": {
      "smsContent": {
        "query": "中国 健康",
        "operator": "and"      
      }
    }
  }
}

# 布尔match查询,内容包括健康或者包括中国
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "match": {
      "smsContent": {
        "query": "中国 健康",
        "operator": "or"		
      }
    }
  }
}

java代码实现方式

// Java代码实现
@Test
public void booleanMatchQuery() throws IOException {
    //1. 创建Request
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------- 选择AND或者OR↓
    builder.query(QueryBuilders.matchQuery("smsContent","中国 健康").operator(Operator.OR));
    //-----------------------------------------------
    request.source(builder);
    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

2.4 multi_match查询,多字段属性查询

match针对一个field做检索,multi_match针对多个field进行检索,多个field对应一个text。

# multi_match 查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "multi_match": {
      "query": "北京",					
      "fields": ["province","smsContent"]
    }
  }
}

java代码实现方式(multiMatchQuery)

// java代码实现
@Test
public void multiMatchQuery() throws IOException {
    //1. 创建Request
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //-----------------------------------------------
    builder.query(QueryBuilders.multiMatchQuery("北京","province","smsContent"));
    //-----------------------------------------------
    request.source(builder);
    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

3 、其他查询

3.1 id查询

根据id查询 where id = ?

# 查询id为21的数据
GET /sms-logs-index/sms-logs-type/21

java代码实现方式(GetRequest)

// Java代码实现
@Test
public void findById() throws IOException {
    //1. 创建GetRequest
    GetRequest request = new GetRequest(index,type,"21");//查id为21,可以打开看id再写即可

    //2. 执行查询
    GetResponse resp = client.get(request, RequestOptions.DEFAULT);

    //3. 输出结果
    System.out.println(resp.getSourceAsMap());
}

3.2 ids查询

根据多个id查询,类似MySQL中的where id in(id1,id2,id2...)

# ids查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "ids": {
      "values": ["21","22","23"]
    }
  }
}

java代码实现方式(idsQuery)

// Java代码实现
@Test
public void findByIds() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------------------
    builder.query(QueryBuilders.idsQuery().addIds("21","22","23"));
    //----------------------------------------------------------
    request.source(builder);

    //3. 执行
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

3.3 prefix查询,前缀查询

前缀查询,可以通过一个关键字去指定一个Field的前缀,从而查询到指定的文档。

# prefix查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "prefix": {
      "corpName": {
        "value": "关键词"
      }
    }
  }
}

java代码实现方式

// Java实现前缀查询
@Test
public void findByPrefix() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------------------
    builder.query(QueryBuilders.prefixQuery("corpName","关键词"));
    //----------------------------------------------------------
    request.source(builder);

    //3. 执行
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

3.4 fuzzy查询,模糊,比如不完全输对,也能搜索出来

模糊查询,我们输入字符的大概,ES就可以去根据输入的内容大概去匹配一下结果。

# fuzzy查询,可以指定前面几个字符是不允许出错
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "fuzzy": {
      "corpName": {
        "value": "大概内容",
        "prefix_length": 2			
      }
    }
  }
}

java代码实现方式(fuzzyQuery)

// Java代码实现Fuzzy查询
@Test
public void findByFuzzy() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------------------
    builder.query(QueryBuilders.fuzzyQuery("corpName","大概内容").prefixLength(2));
    //----------------------------------------------------------
    request.source(builder);

    //3. 执行
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

3.5 wildcard查询,外卡,通配符查询

通配查询,和MySQL中的like是一个套路类似,可以在查询时,在字符串中指定通配符*和占位符?

# wildcard查询,可以使用*和?指定通配符和占位符(指定长度)
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "wildcard": {
      "corpName": {
        "value": "前缀*"    
      }
    }
  }
}

代码实现方式(wildcardQuery)

// Java代码实现Wildcard查询
@Test
public void findByWildCard() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------------------
    builder.query(QueryBuilders.wildcardQuery("corpName","中国*"));
    //----------------------------------------------------------
    request.source(builder);

    //3. 执行
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

3.6 range查询,范围查询

范围查询,只针对数值类型,对某一个Field进行大于或者小于的范围指定

# range查询,可以使用 gt:>      gte:>=     lt:<     lte:<=
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "range": {
      "fee": {
        "gt": 5,
        "lte": 10
      }
    }
  }
}

java代码实现(rangeQuery)

// Java实现range范围查询
@Test
public void findByRange() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------------------
    builder.query(QueryBuilders.rangeQuery("fee").lte(10).gte(5));
    //----------------------------------------------------------
    request.source(builder);

    //3. 执行
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

3.7 regexp查询,正则查询

正则查询,通过你编写的正则表达式去匹配内容。

Ps:prefix,fuzzy,wildcard和regexp查询效率相对比较低,要求效率比较高时,避免去使用

# regexp查询,编写正则
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "regexp": {
      "mobile": "180[0-9]{8}"    
    }
  }
}

java代码实现方式(regexpQuery)

// Java代码实现正则查询
@Test
public void findByRegexp() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //----------------------------------------------------------
    builder.query(QueryBuilders.regexpQuery("mobile","180[0-9]{8}"));
    //----------------------------------------------------------
    request.source(builder);

    //3. 执行
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

4、 深分页之Scroll(滚动分页)

之前学过分页了,为啥还要学习深分页?
因为ES对from + size是有限制的,from和size二者之和不能超过1W

原理:

  • from+size在ES查询数据的方式↓:

    • 第一步现将用户指定的关键字进行分词。

    • 第二步将词汇去分词库中进行检索,得到多个文档的id。

    • 第三步去各个分片中去拉取指定的数据。耗时较长。

    • 第四步将数据根据score分数进行排序。耗时较长。

    • 第五步根据from的值,将查询到的数据舍弃一部分。

    • 第六步返回结果。

  • scroll+size在ES查询数据的方式↓:

    • 第一步现将用户指定的关键字进行分词。

    • 第二步将词汇去分词库中进行检索,得到多个文档的id。

    • 第三步将文档的id存放在一个ES的上下文中。

    • 第四步根据你指定的size的个数去ES中检索指定个数的数据,拿完数据的文档id,会从上下文中移除。

    • 第五步如果需要下一页数据,直接去ES的上下文中,找后续内容。

    • 第六步循环第四步和第五步

Scroll查询方式,不适合做实时的查询

分页课下扩展阅读↓

游标查询 Scroll | Elasticsearch: 权威指南 | Elastic

Elasticsearch 5.x 源码分析(3)from size, scroll 和 search after - 简书

elasticsearch深度分页问题 - 超级小小黑 - 博客园

# 执行scroll查询,返回第一页数据,并且将文档id信息存放在ES上下文中,指定生存时间为1m,1分钟
POST /sms-logs-index/sms-logs-type/_search?scroll=1m
{
  "query": {
    "match_all": {}
  },
  "size": 4,
  "sort": [					
    {
      "fee": {
        "order": "desc"
      }
    }
  ]
}

# 根据scroll,查询下一页数据
POST /_search/scroll
{
  "scroll_id": "根据第一步得到的scorll_id去指定",
  "scroll": "scorll信息的生存时间"
}

# 删除scroll,在ES上下文中的数据
DELETE /_search/scroll/scroll_id

java代码实现方式

// Java实现scroll分页
@Test
public void scrollQuery() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定scroll信息!
    request.scroll(TimeValue.timeValueMinutes(1L));

    //3. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    builder.size(4);
    builder.sort("fee", SortOrder.DESC);
    builder.query(QueryBuilders.matchAllQuery());
    
    request.source(builder);

    //4. 获取返回结果scrollId,source
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    String scrollId = resp.getScrollId();
    System.out.println("----------首页---------");
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }

    while(true) {
        //5. 循环 - 创建SearchScrollRequest
        SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);

        //6. 指定scrollId的生存时间!
        scrollRequest.scroll(TimeValue.timeValueMinutes(1L));

        //7. 执行查询获取返回结果
        SearchResponse scrollResp = client.scroll(scrollRequest, RequestOptions.DEFAULT);

        //8. 判断是否查询到了数据,输出
        SearchHit[] hits = scrollResp.getHits().getHits();
        
        if(hits != null && hits.length > 0) {
            System.out.println("----------下一页---------");
            for (SearchHit hit : hits) {
                System.out.println(hit.getSourceAsMap());
            }
        }else{
            //9. 判断没有查询到数据-退出循环
            System.out.println("----------结束---------");
            break;
        }
    }

    //10. 创建CLearScrollRequest
    ClearScrollRequest clearScrollRequest = new ClearScrollRequest();

    //11. 指定ScrollId
    clearScrollRequest.addScrollId(scrollId);

    //12. 删除ScrollId
    ClearScrollResponse clearScrollResponse = client.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);

    //13. 输出结果
    System.out.println("删除scroll:" + clearScrollResponse.isSucceeded());
}

5 _delete_by_query,删除,根据查询出来的数据来删除(查询删除)

根据term,match等查询方式去删除大量的文档

Ps:如果你需要删除的内容,是index下的大部分数据,推荐创建一个全新的index,将保留的文档内容,添加到全新的索引

# delete-by-query
POST /sms-logs-index/sms-logs-type/_delete_by_query
{
  "query": {
    "range": {
      "fee": {
        "lt": 4
      }
    }
  }
}

java代码实现方式

// Java代码实现
@Test
public void deleteByQuery() throws IOException {
    //1. 创建DeleteByQueryRequest
    DeleteByQueryRequest request = new DeleteByQueryRequest(index);
    request.types(type);

    //2. 指定检索的条件    和SearchRequest指定Query的方式不一样
    request.setQuery(QueryBuilders.rangeQuery("fee").lt(4));

    //3. 执行删除
    BulkByScrollResponse resp = client.deleteByQuery(request, RequestOptions.DEFAULT);

    //4. 输出返回结果
    System.out.println(resp.toString());
}

6 、复合查询

6.1 bool查询,布尔查询,组装多个条件

复合过滤器,将你的多个查询条件,以一定的逻辑组合在一起。

  • must: 所有的条件,用must组合在一起,表示And的意思

  • must_not:将must_not中的条件,全部都不能匹配,表示Not的意思

  • should:所有的条件,用should组合在一起,表示Or的意思

// Java代码实现Bool查询
@Test
public void BoolQuery() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    
    //# 查询省份为武汉或者北京
    boolQuery.should(QueryBuilders.termQuery("province","武汉"));
    boolQuery.should(QueryBuilders.termQuery("province","北京"));
    //# 运营商不是联通
    boolQuery.mustNot(QueryBuilders.termQuery("operatorId",2));
    
    //# smsContent中包含中国和平安
    boolQuery.must(QueryBuilders.matchQuery("smsContent","中国"));
    boolQuery.must(QueryBuilders.matchQuery("smsContent","平安"));

    builder.query(boolQuery);
    
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

6.2 boosting查询

之前我们查询数据,可以查到分数,分数越高,越靠前,但是有些时候,我又不想某些数据太靠前,所以要操作分数↓

boosting查询可以帮助我们去影响查询后的score↓

  • positive:只有匹配上positive的查询的内容,才会被放到返回的结果集中(巧记积极返回,我要的)

  • negative:如果匹配上和positive并且也匹配上了negative,就可以降低这样的文档score(巧记消极减分,我要扣分的)

  • negative_boost:指定系数,必须小于等于1.0

关于查询时,分数是如何计算的↓

  • 搜索的关键字在文档中出现的频次越高,分数就越高

  • 搜索的内容所在的文档越短,分数就越高

  • 我们在搜索时,指定的关键字也会被分词,这个被分词的内容,被分词库匹配的个数越多,分数越高

# boosting查询,收货安装
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "boosting": {
      "positive": {
        "match": {
          "smsContent": "收货安装"
        }
      },
      "negative": {
        "match": {
          "smsContent": "王五"
        }
      },
      "negative_boost": 0.5
    }
  }
}

java代码实现方式:

// Java实现Boosting查询
@Test
public void BoostingQuery() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    
    BoostingQueryBuilder boostingQuery = QueryBuilders.boostingQuery(
            QueryBuilders.matchQuery("smsContent", "收货安装"),
            QueryBuilders.matchQuery("smsContent", "王五")
    ).negativeBoost(0.5f);

    builder.query(boostingQuery);
    
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

查询结果比如没减分之前王五的分数是1.75...,减分之后,系数写的0.5,就相当于1.75乘以0.5等于0.8

7 、bool查询之过滤查询,filter查询

query,根据你的查询条件,去计算文档的匹配度得到一个分数,并且根据分数进行排序,不会做缓存

filter,根据你的查询条件去查询文档,不去计算分数,而且filter会对经常被过滤的数据,进行缓存(如果注重匹配度用query,否则里面使用filter效率更高)

# filter查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "corpName": "关键词"
          }
        },
        {
          "range": {
            "fee": {
              "lte": 5
            }
          }
        }
      ]
    }
  }
}

java实现方式

// Java实现filter操作
@Test
public void filter() throws IOException {
    //1. SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    
    boolQuery.filter(QueryBuilders.termQuery("corpName","关键词"));
    boolQuery.filter(QueryBuilders.rangeQuery("fee").lte(5));

    builder.query(boolQuery);
    
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }
}

8 、高亮查询

高亮查询就是你用户输入的关键字,以一定的特殊样式展示给用户,让用户知道为什么这个结果被检索出来了。

高亮展示的数据,本身就是文档中的一个Field,单独将数据以Field以highlight的形式返回给你,

ES提供了一个highlight属性,和query同级别,里面可以指定↓

  • fragment_size:指定高亮数据展示多少个字符回来,默认为100

  • pre_tags:指定前缀标签,举个栗子< font color='red' >

  • post_tags:指定后缀标签,举个栗子< /font >

  • fields:指定哪几个Field以高亮的形式返回

RESTful实现

# highlight查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "match": {
      "smsContent": "关键词"
    }
  },
  "highlight": {
    "fields": {
      "smsContent": {}
    },
    "pre_tags": "",
    "post_tags": "",
    "fragment_size": 10
  }
}

说白了就是把要高亮的数据增加一个html标签并加上属性,比如字体的红色属性,这样以后把查询出来的数据在浏览器打开时就是红色的了

java代码实现方式:

// Java实现高亮查询
@Test
public void highLightQuery() throws IOException {
    //1. SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件(高亮)
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //2.1 指定查询条件
    builder.query(QueryBuilders.matchQuery("smsContent","关键词"));
    
    //2.2 指定高亮
    HighlightBuilder highlightBuilder = new HighlightBuilder();
    highlightBuilder.field("smsContent",10)
            .preTags("")
            .postTags("");
    
    builder.highlighter(highlightBuilder);

    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取高亮数据,输出
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getHighlightFields().get("smsContent"));
    }
}

9、 聚合查询

ES的聚合查询和MySQL的聚合查询类似,但ES的聚合查询相比MySQL要强大的多,有ES提供的统计数据的方式多种多样,但是格式基本如下↓

# ES聚合查询的RESTful语法
POST /index/type/_search
{
    "aggs": {
        "名字推荐写agg": {
            "agg_type": {
                "属性": "值"
            }
        }
    }
}

9.1 基数去重,计数查询

去重计数,即Cardinality,第一步先将返回的文档中的一个指定的field进行去重,统计一共有多少条

# 去重计数查询 北京 上海 武汉 山西
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "cardinality": {
        "field": "province"
      }
    }
  }
}

java代码实现方式

//Java代码实现去重计数查询
@Test
public void cardinality() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定使用的聚合查询方式
    SearchSourceBuilder builder = new SearchSourceBuilder();
    
    builder.aggregation(AggregationBuilders.cardinality("agg").field("province"));

    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取返回结果
    Cardinality agg = resp.getAggregations().get("agg");
    long value = agg.getValue();
    System.out.println(value);
}

9.2 范围统计查询,比如在一定的区间内的数据统计查询出来封装在桶里面

统计一定范围内出现的文档个数,比如,针对某一个Field的值在 0~100,100~200,200~300之间文档出现的个数分别是多少。

范围统计可以针对普通的数值,针对时间类型,针对ip类型都可以做相应的统计。

range数值范围,date_range时间范围,ip_range即ip访问统计↓

# 数值方式范围统计,from有包含当前值的意思
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "range": {
        "field": "fee",
        "ranges": [
          {
            "to": 5
          },
          {
            "from": 5,      
            "to": 10
          },
          {
            "from": 10
          }
        ]
      }
    }
  }
}

结果,from5有>=5的意思,而to没有

时间范围统计↓

# 时间方式范围统计
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "date_range": {
        "field": "createDate",
        "format": "yyyy", 
        "ranges": [
          {
            "to": 2000
          },
          {
            "from": 2000
          }
        ]
      }
    }
  }
}

结果,2000年以前的有多少个,2000以后的有多少个数据

ip范围统计↓

# ip方式 范围统计
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "ip_range": {
        "field": "ipAddr",
        "ranges": [
          {
            "to": "10.126.2.9"
          },
          {
            "from": "10.126.2.9"
          }
        ]
      }
    }
  }
}
// Java实现数值 范围统计
@Test
public void range() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定使用的聚合查询方式
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //---------------------------------------------
    builder.aggregation(AggregationBuilders.range("agg").field("fee")
                                        .addUnboundedTo(5)
                                        .addRange(5,10)
                                        .addUnboundedFrom(10));
    //---------------------------------------------
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取返回结果
    Range agg = resp.getAggregations().get("agg");//注意这里用Range才有getBuckets方法↓
    for (Range.Bucket bucket : agg.getBuckets()) {
        String key = bucket.getKeyAsString();
        Object from = bucket.getFrom();
        Object to = bucket.getTo();
        long docCount = bucket.getDocCount();
        
        System.out.println(String.format("key:%s,from:%s,to:%s,docCount:%s",key,from,to,docCount));//%s理解为占位符的意思
    }
}

代码怎么写其实和查询出来的结果标签其实是一一对应的,要注意这里用Range才有getBuckets方法

9.3 扩展状态,统计聚合查询,求最值等等

他可以帮你查询指定Field的最大值,最小值,平均值,平方和等

使用extended_stats查出来的结果里面就有各种最大值,最小值,平均值,平方和等(扩展状态,扩展内容

# 统计聚合查询,扩展状态
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "extended_stats": {
        "field": "fee"
      }
    }
  }
}

结果,使用extended_stats查出来的结果里面就有各种最大值,最小值,平均值,平方和等等

java代码实现方式

// Java实现统计聚合查询
@Test
public void extendedStats() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定使用的聚合查询方式
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //---------------------------------------------
    builder.aggregation(AggregationBuilders.extendedStats("agg").field("fee"));
    //---------------------------------------------
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取返回结果
    ExtendedStats agg = resp.getAggregations().get("agg");
    double max = agg.getMax();
    double min = agg.getMin();
    System.out.println("fee的最大值为:" + max + ",最小值为:" + min);
}

其他聚合查询方式看官方文档:Elasticsearch Guide [6.5] | Elastic

10 、地图经纬度搜索

ES中提供了一个数据类型 geo_point,这个类型就是用来存储经纬度的,

创建一个带geo_point类型的索引,并添加测试数据,来方便接下来的查询↓

10.1 ES的地图检索方式

语法 说明
geo_distance 直线距离检索方式
geo_bounding_box 以两个点确定一个矩形,获取在矩形内的全部数据
geo_polygon 以多个点,确定一个多边形,获取多边形内的全部数据

Java中ElasticSearch的各种查询(普通,模糊,前缀,高亮,聚合,范围)_第1张图片

 

10.2 基于RESTful实现地图检索

geo_distance↓

# geo_distance,确定一个点,表示检索经纬度是北京站北京distance为3000米,方圆的范围的数据,arc圆形
POST /map/map/_search
{
  "query": {
    "geo_distance": {
      "location": {            
        "lon": 116.433733,
        "lat": 39.908404
      },
      "distance": 3000,             
      "distance_type": "arc" 
    }
  }
}

geo_bounding_box↓

# geo_bounding_box,左上角中央人民大学的经纬度坐标点,右下角北京建筑大学的经纬度坐标点
POST /map/map/_search
{
  "query": {
    "geo_bounding_box": {
      "location": {
        "top_left": {				
          "lon": 116.326943,
          "lat": 39.95499
        },
        "bottom_right": {			 
          "lon": 116.347783,
          "lat": 39.939281
        }
      }
    }
  }
}

geo_polygon↓

# geo_polygon,指定多个点确定一个多边形,第一个点西苑操场,第二个点巴沟山水园,第三个点中关村
POST /map/map/_search
{
  "query": {
    "geo_polygon": {
      "location": {
        "points": [					
          {
            "lon": 116.298916, 
            "lat": 39.99878
          },
          {
            "lon": 116.29561,  
            "lat": 39.972576
          },
          {
            "lon": 116.327661, 
            "lat": 39.984739
          }
        ]
      }
    }
  }
}

10.3 Java实现es基于地理位置经纬度范围查询↓

public class Test03 {
    RestHighLevelClient client = ESClient.getClient();
    String index = "map";//索引库名字
    String type = "map";//类型表名字

    @Test
    public void geoPolygon() throws IOException {
        //1.SearchRequest
        SearchRequest request = new SearchRequest(index);
        request.types(type);

        //2.指定检索方式
        SearchSourceBuilder builder = new SearchSourceBuilder();
        
        List points = new ArrayList();
        //geo_polygon,多点多边形,以第一个点西苑操场,第二个点巴沟山水园,第三个点中关村构成的多边形,包括海淀公园↓
        points.add(new GeoPoint(39.99878,116.298916));
        points.add(new GeoPoint(39.972576,116.29561));
        points.add(new GeoPoint(39.984739,116.327661));
        
        builder.query(QueryBuilders.geoPolygonQuery("location",points));

        //geo_bounding_box,两点矩形,以左上角中央人民大学,右下角北京建筑大学构成的矩形包括北京动物园↓
        //GeoBoundingBoxQueryBuilder location1 = QueryBuilders.geoBoundingBoxQuery("location");
        //location1.topLeft().reset(39.95499,116.326943);
        //location1.bottomRight().reset(39.939281,116.347783);
        //builder.query(location1);

        //distance,单点方圆,北京站这个点,方圆3000米的范围,包括天安门↓
        //GeoDistanceQueryBuilder location = QueryBuilders.geoDistanceQuery("location");
        //location.point(39.908404,116.433733).distance("3000");
        //builder.query(location);

        request.source(builder);

        //3.执行查询
        SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

        //4.输出结果
        for (SearchHit hit : resp.getHits().getHits()) {
            System.out.println(hit.getSourceAsMap());
        }
    }
}

你可能感兴趣的:(ElasticSearch,java,elasticsearch,开发语言,全文检索,搜索引擎)