Handler

Handler作为android开发中最常见的一个类,想必大家用过很多次,它的用法是android开发必须掌握的基本技能之一。此次我们就来阅读Handler相关源码,探索其线程切换的内部实现!

1、Looper

我们都知道,在非主线程使用Handler必须先调用Looper类的两个方法(主线程默认已完成这两步):Looper.prepare()和Looper.loop()。那么Looper和Handler究竟有什么样的关系?我们先来看Looper的部分代码,看看是否能得到有用的信息。

public final class Looper {
    // sThreadLocal.get() will return null unless you've called prepare().
    //线程与Looper绑定,一个线程对应一个Looper对象
    static final ThreadLocal sThreadLocal = new ThreadLocal();
    private static Looper sMainLooper;  // guarded by Looper.class
    //消息队列
    final MessageQueue mQueue;
    //Looper对象对应的线程
    final Thread mThread;
    /* 如果设置了该值,则如果消息分派花费的时间超过时间,则looper将显示一个警告日志。 */
    /* If set, the looper will show a warning log if a message dispatch takes longer than time. */
    private long mSlowDispatchThresholdMs;

     /** Initialize the current thread as a looper.初始化线程对应的Looper
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        //判断线程是否已有Looper,一个线程只能创建一个Looper
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    private Looper(boolean quitAllowed) {
        //初始化消息队列
        mQueue = new MessageQueue(quitAllowed);
        //持有Looper对应的线程引用
        mThread = Thread.currentThread();
    }

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        //获取本线程的Looper
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        //确保此线程的标识是本地进程的标识,并跟踪标识标记的实际内容。
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        //死循环
        for (;;) {
            //获取消息队列的消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                //没有消息表明消息队列正在退出。
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            //获取能否打印日志的标记
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            //设置的消息分发超时时间
            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            //trace日志能否打印的标记
            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            //发送起始时间
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                //消息分发到对应的Handler
                msg.target.dispatchMessage(msg);
                //发送结束时间
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            //设置了超时时间,而且超时了,打印日志
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            //确保在调度过程中线程的标识没有被破坏。
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }
    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }
}

从Looper.prepare()和Looper.loop()两个方法的源码来看,可以得到以下结论:
1、线程和Looper是一一对应的,这个关系通过ThreadLocal来维持。一个线程只能创建一个Looper对象!
2、Looper内部维护了一个消息队列,所有发送给线程的Message对象都存储在这个消息队列中。
3、消息发送的最终代码是“msg.target.dispatchMessage(msg)”;所以如果有人问你一个线程创建了多个Handler,那消息是如何找到它对应的Handler?你只需要跟他说消息Message自己带有目标Handler对象的索引....
4、loop()方法里除了事件分发其实没做什么,大部分代码都是为了打印跟踪日志,当然包括了超时日志。
5、Looper.loop()方法里面通过死循环来实现事件的轮询分发,只有在消息队列退出(即queue.next()返回为空)时死循环才会停止,queue.next()何时返回为空,后续看MessageQueue源码。

2、Handler

说完Looper我们再来看Handler,跟上面一样我们依旧从方法调用来看Handler的消息发送流程:

Handler mHandler = new Handler(){
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
        }
    };

Message msg = Message.obtain();
mHandler.sendMessage(msg);

首先我们来看Handler的无参构造函数里面做了什么:

public class Handler {
    /*
     * Set this flag to true to detect anonymous, local or member classes
     * that extend this Handler class and that are not static. These kind
     * of classes can potentially create leaks.
     *将此标志设置为true以检测不是静态的匿名、本地或成员的继承Handler的类。
     *这种类可能会造成泄漏。
     */
    private static final boolean FIND_POTENTIAL_LEAKS = false;

    /**
     * Default constructor associates this handler with the {@link Looper} for the
     * current thread.
     *默认构造函数将这个handler与当前线程的{@link Looper}关联起来。
     * If this thread does not have a looper, this handler won't be able to receive messages
     * so an exception is thrown.
     *如果此线程没有looper,则此处理程序将无法接收消息,并抛出异常。
     */
    public Handler() {
        this(null, false);
    }

    /**
     * @param callback The callback interface in which to handle messages, or null.
     * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
     * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
     *
     * @hide
     */
    public Handler(Callback callback, boolean async) {
        //检测匿名类或内部类是否是静态的
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
        //获取线程对应的Looper
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        //引用Looper的消息队列
        mQueue = mLooper.mQueue;
        //回调接口赋值
        mCallback = callback;
        mAsynchronous = async;
    }
}

Handler初始化主要是跟线程对应Looper建立联系,并获得消息队列的引用方便之后发送流程中消息的缓存。
接下来我们来看Handler.sendMessage(msg)方法,探究消息发送的内部实现:

public class Handler {

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        //延迟时间不能小于0
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            //设置消息是否异步,这意味着它不受Looper同步屏障的约束。
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        //优先消息自带callback
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            //Handler的成员变量callback次级
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
             //Handler的handleMessage()方法最后
            handleMessage(msg);
        }
    }

}

是的兜兜转转调了几个接口后,你会发现发送的最终逻辑是往MessageQueue里面塞Message,Handler的另外一个重要任务就是把Handler对象赋值给消息Message的成员变量target!!!!
其实看完上面两个类的源码,我们大体上已经可以理清Handler的整个机制了:
1、线程通过ThreadLocal对应一个唯一的Looper;
2、Looper拥有一个MessageQueue消息队列成员变量,并且开启了死循环轮询MessageQueue实现事件分发;
3、Handler则是将持有本身引用的Message放进MessageQueue,并等待Looper分发Message。
4、Handler最终分发Message的方法dispatchMessage(Message msg)里面,回调对象的选择有主次之分:优先消息自带callback,Handler的成员变量callback次级,Handler的handleMessage()方法最后

最后我们再来看看MessageQueue里面的代码,看看queue.next()是如何实现只在退出时返空的,看看queue.enqueueMessage(msg, uptimeMillis)方法具体实现:

public final class MessageQueue {

    boolean enqueueMessage(Message msg, long when) {
        //合法校验
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            //队列正在退出,不能再添加Message,抛出异常
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            //标志为正在使用
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                //新的队列头部消息,唤醒事件队列如果阻塞。
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                //插入到队列中间。通常我们不需要唤醒事件队列,
                //除非在队列的顶部有一个屏障,并且消息是队列中最早的异步消息。
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        //如果消息循环已经退出并被释放,则return。
        //如果应用程序在退出后试图重新启动looper(不支持该操作),就会发生这种情况。
        //mPtr默认为0,MessageQueue 初始化是赋值,quit()或dispose()方法重置为0.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                //将当前线程中挂起的任何绑定器命令刷新到内核驱动程序。
                //在执行可能会阻塞很长时间的操作之前调用此方法非常有用,
                //可以确保释放了所有挂起的对象引用,以防止进程持有对象的时间超过需要的时间。
                Binder.flushPendingCommands();
            }
  
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                //尝试检索下一条消息。如果发现返回。
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    //查找队列中的下一个异步消息。
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {//找到了异步消息
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        //下一条消息还没有准备好。设置一个超时,在它准备好时唤醒它。
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.得到一个可以发送的消息
                        mBlocked = false;
                        //重置前一条消息
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        //消息设置为正在使用,并返回
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.没有消息了
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                //现在所有挂起的消息都已处理完毕,处理quit消息。
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                //如果第一次空闲,则获得要运行的空闲组的数量。
                // 空闲的handlers只在队列为空或队列中的第一个消息(可能是一个障碍)将要处理时运行。
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    //重新赋值pendingIdleHandlerCount 
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    //没有要运行的空闲handlers 。循环并等待更多。
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            //运行空闲handlers。
            //我们只在第一次迭代中到达这个代码块。
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            //将空闲handler 计数重置为0,为了不再运行它们。
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            //在调用空闲handler时,可能已经传递了新消息,因此返回并再次查找未等待的消息。
            nextPollTimeoutMillis = 0;
        }
    }

}

看完上面两个方法后,我们再结合之前Looper和Handler的代码,可以得出以下结论:
1、Looper里面开启死循环通过MessageQueue.next()方法从队列里面拿Message,MessageQueue.next()方法只有在MessageQueue退出时才会返回null,进而停止Looper里面的死循环,其它情况下要么返回某个Message要么在next()里面死循环遍历查找消息。
2、MessageQueue.enqueueMessage(msg, uptimeMillis)确实是往队列中插入Message,一般插到当前指针的下一个位置或者队列头部。

你可能感兴趣的:(Handler)