堆排序算法总结和解析

堆排序基本介绍

  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。

  2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。

  3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

  4. 大顶堆举例说明

image

我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:

image
大顶堆特点:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2] // i 对应第几个节点,i从0开始编号

image
  1. 小顶堆举例说明

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2] // i 对应第几个节点,i从0开始编号

image
  1. 一般升序采用大顶堆,降序采用小顶堆

基本思想

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点。
  3. 将其与末尾元素进行交换,此时末尾就为最大值。
  4. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

步骤

堆排序的基本思想是:
将待排序序列构造成一个大顶堆
此时,整个序列的最大值就是堆顶的根节点。
将其与末尾元素进行交换,此时末尾就为最大值。
然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

image
image
image
image
image
image

[图片上传失败...(image-94dbe2-1569459611345)]

具体代码实现

该代码实现最好结合以上的步骤比较容易理解,为什么堆排序是需要使用二叉树的概念去理解的,
同时里面的一些节点对应的必须具备以下的一些知识:

1.数组可以转换成顺序二叉树(也是完全二叉树)。

2.二叉树的倒数第一个非叶子节点索引为 2*i+1 i 为二叉树总数

public static void main(String[] args) {
        //要求将数组进行升序排序
        //int arr[] = {4, 6, 8, 5, 9};
        // 创建要给80000个的随机的数组
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }

        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        
        heapSort(arr);
        
        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序前的时间是=" + date2Str);
        //System.out.println("排序后=" + Arrays.toString(arr));
    }

    //编写一个堆排序的方法
    public static void heapSort(int arr[]) {
        int temp = 0;
        System.out.println("堆排序!!");
        
//      //分步完成
//      adjustHeap(arr, 1, arr.length);
//      System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//      
//      adjustHeap(arr, 0, arr.length);
//      System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
        
        //完成我们最终代码
        //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        for(int i = arr.length / 2 -1; i >=0; i--) {
            adjustHeap(arr, i, arr.length);
        }
        
        /*
         * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
            3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
         */
        for(int j = arr.length-1;j >0; j--) {
            //交换
            temp = arr[j];
            arr[j] = arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, j); 
        }
        
        //System.out.println("数组=" + Arrays.toString(arr)); 
        
    }
    
    //将一个数组(二叉树), 调整成一个大顶堆
    /**
     * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
     * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
     * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
     * @param arr 待调整的数组
     * @param i 表示非叶子结点在数组中索引
     * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
     */
    public  static void adjustHeap(int arr[], int i, int lenght) {
        // 先取出当前元素的值,保存在临时变量
        int temp = arr[i];
        // 开始调整
        // 说明
        //1. k = i * 2 + 1   k是 i结点的左子结点
        for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
            //说明左子结点的值小于右子结点的值
            if(k+1 < lenght && arr[k] < arr[k+1]) {
                k++; // k 指向右子结点
            }
            if(arr[k] > temp) { //如果子结点大于父结点
                arr[i] = arr[k]; //把较大的值赋给当前结点
                i = k; //!!! i 指向 k,继续循环比较
            } else {
                break;//!
            }
        }
        //当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
        arr[i] = temp;//将temp值放到调整后的位置
    }
}

结果

image

你可能感兴趣的:(堆排序算法总结和解析)