LeetCode第53题,最大子数组和

LeetCode 高频题 数组篇

53.最大子数组和

大家好,我是Panda

今天分享的是LeetCode第53题,最大子数组和。

力扣题目链接:LeetCode.53

题目描述:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

解法:动态规划

定义状态(定义子问题)

dp[i]:表示以 nums[i] 结尾连续 子数组的最大和。

状态转移方程(描述子问题之间的联系)

根据状态的定义,由于 nums[i] 一定会被选取,并且以 nums[i] 结尾的连续子数组与以 nums[i - 1] 结尾的连续子数组只相差一个元素 nums[i] 。

假设数组 nums 的值全都严格大于 0,那么一定有 dp[i] = dp[i - 1] + nums[i]。

可是 dp[i - 1] 有可能是负数,于是分类讨论:

如果 dp[i - 1] > 0,那么可以把 nums[i] 直接接在 dp[i - 1] 表示的那个数组的后面,得到和更大的连续子数组;
如果 dp[i - 1] <= 0,那么 nums[i] 加上前面的数 dp[i - 1] 以后值不会变大。于是 dp[i] 「另起炉灶」,此时单独的一个 nums[i] 的值,就是 dp[i]。

思考初始值

dp[0] 根据定义,只有 1 个数,一定以 nums[0] 结尾,因此 dp[0] = nums[0]

这个问题的输出是把所有的 dp[0]dp[1]、……、dp[n - 1] 都看一遍,取最大值。

public class Solution {

    public int maxSubArray(int[] nums) {
        int len = nums.length;
        // dp[i] 表示:以 nums[i] 结尾的连续子数组的最大和
        int[] dp = new int[len];
        dp[0] = nums[0];

        for (int i = 1; i < len; i++) {
            if (dp[i - 1] > 0) {
                dp[i] = dp[i - 1] + nums[i];
            } else {
                dp[i] = nums[i];
            }
        }

        // 也可以在上面遍历的同时求出 res 的最大值,这里我们为了语义清晰分开写,大家可以自行选择
        int res = dp[0];
        for (int i = 1; i < len; i++) {
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

时间复杂度:

O(N) ,这里 N 是输入数组的长度。

优化:

根据「状态转移方程」,dp[i] 的值只和 dp[i - 1] 有关,因此可以使用「滚动变量」的方式将代码进行优化。

class Solution {
    public int maxSubArray(int[] nums) {
        int res = nums[0];
        for (int i = 1; i < nums.length; i++) {
            nums[i] += Math.max(nums[i - 1], 0);
            res = Math.max(res, nums[i]);
        }
        return res;
    }
}

时间复杂度:

O(N) ,这里 N 是输入数组的长度。

参考链接:参考链接

你可能感兴趣的:(leetcode,动态规划,算法)