Aster论文:SPN校正图像部分理解

论文题目:Aster:An attentional scene Text Recognizer with Flexible Rectification

论文中用了SPN网络进行弯曲文字图像的校正,其SPN核心idea为:model spatical transform as a learnable network.

空间变换基础

利用矩阵变换实现平移、旋转、缩放

2D图像

平移:

\left[\begin{array}{l} x^{\prime} \\ y \\ 1 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & t x \\ 0 & 1 & t y \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{c} x+t x \\ y+t y \\ 1 \end{array}\right]

旋转:
\left[\begin{array}{l} x^{\prime} \\ y \\ 1 \end{array}\right]=\left[\begin{array}{ccc} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{c} x \cos \theta+y \sin \theta \\ x \sin \theta+y \cos \theta \\ 1 \end{array}\right]

缩放:

\left[\begin{array}{l} x^{\prime} \\ y^{\prime} \\ 1 \end{array}\right]=\left[\begin{array}{ccc} s x & 0 & 0 \\ 0 & s y & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{c} x^{*} s x \\ y^{*} s y \\ 1 \end{array}\right]

所以对于一副2D图像来说,只需要 6个参数就能实现对图像的平移、缩放、旋转等变换.即:

Aster中的SPN结构

在Aster中,作者应用SPN网络对输入文字图像进校正.其主要结构如图所示:


image
  • 首先将输入图片resize.
  • 通过Localization Network去定位图像中的K个控制点(control points),可以理解为图像中文字区域上下边界点.
  • 利用我们的先验知识,校正后的文字区域应该平整地位于图像中心区域,那我们可以得到预设的校正后的K个控制点(control points)的坐标(The control points on the output image are placed at fixed locations along the top
    and bottom image borders with equal spacings. )
  • 利用与的位置关系构建变换矩阵,利用P将原图的每一个像素变化为 rectified Image.

符号定义:

原始输入图像为
经过resize,尺寸变小的图像记作:
校正后的图像记作

Localization Network

aster 利用Localization Network隐形地去学习K个控制点.

对于原始图I,其控制点集被定义为:,其中代表第k个控制点的坐标.

对于校正后的图像的控制点集同样定义;

localization network 几层卷积+max-pooling 然后最后一层是全连接网络,网络输出size 为2K,代表了K个控制点坐标.

The network consists of a few convolutional layers, with max-pooling layers inserted between them. The output layer is a fully-connected layer whose output size is 2K.

利用localization network直接回归得到

代码部分:

class LocalizationNetwork(nn.Module):
    """ Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """

    def __init__(self, F, I_channel_num):
        super(LocalizationNetwork, self).__init__()
        self.F = F
        self.I_channel_num = I_channel_num
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
                      bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # batch_size x 64 x I_height/2 x I_width/2
            nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # batch_size x 128 x I_height/4 x I_width/4
            nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # batch_size x 256 x I_height/8 x I_width/8
            nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
            nn.AdaptiveAvgPool2d(1)  # batch_size x 512
        )

        self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
        self.localization_fc2 = nn.Linear(256, self.F * 2)

        # Init fc2 in LocalizationNetwork
        self.localization_fc2.weight.data.fill_(0)
        """ see RARE paper Fig. 6 (a) """
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)

    def init_weights(self,pretrained=None):
        if pretrained is None:
            for m in self.conv.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)
        elif isinstance(pretrained,str):
            ##TODO:load pretrain model from pth
            pass
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, batch_I):
        """
        input:     batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width]
        output:    batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2]
        """
        batch_size = batch_I.size(0)
        features = self.conv(batch_I).view(batch_size, -1)
        batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.F, 2)
        return batch_C_prime

grid generator

image

如图所示,我们期望通过学习出来的与预设的位置关系学习到一个变换矩阵T,使得我们能够应用变换矩阵T到整个输入图,从而得到校正后的图像

前面我们知道只要6个参数就可以对2d图像进行变换.所以我们定义了 2D TPS transformation矩阵
为一个的一个矩阵:

其中(与前面K个控制点相对应上,充分利用控制点信息)

给定一个2D 的点 ,TPS 通过线性投影映射T得到其变换后的点

\mathbf{p}^{\prime}=\mathbf{T}\left[\begin{array}{c} 1 \\ \mathbf{p} \\ \phi\left(\left\|\mathbf{p}-\mathbf{c}_{1}\right\|\right) \\ \vdots \\ \phi\left(\left\|\mathbf{p}-\mathbf{c}_{K}\right\|\right) \end{array}\right]

其中代表了核函数计算像素点p与控制点的欧式距离.

我们通过 与之间的线性映射关系来得到变换矩阵T,那么

\mathbf{c}_{i}^{\prime}=\mathbf{T}\left[\begin{array}{c} 1 \\ \mathbf{c}_{i} \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{1}\right\|\right) \\ \vdots \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{K}\right\|\right) \end{array}\right], i=1, \ldots, K

其中边界值的设定为:

根据以上公式,我们得到:
\begin{aligned} \mathbf{T} \Delta_{\mathbf{C}} &=\left[\begin{array}{lll} \mathbf{C}^{\prime} & \mathbf{0}^{2 \times 3} \end{array}\right] \\ \mathbf{\Delta}_{\mathbf{C}} &=\left[\begin{array}{ccc} \mathbf{1}^{1 \times K} & \mathbf{0} & \mathbf{0} \\ \mathbf{C} & \mathbf{0} & \mathbf{0} \\ \hat{\mathbf{C}} & \mathbf{1}^{K \times 1} & \mathbf{C}^{\top} \end{array}\right] \end{aligned}

其中是一个K*K的矩阵,,
通过计算,我们可以求得变换矩阵T:

所以整个gird-generator的结构示意图如下所示:


image

通过localization network回归得到的与预设的C构建T矩阵,然后再将T矩阵应用到每个像素p上得到校正后图像;

代码部分:

class GridGenerator(nn.Module):
    """ Grid Generator of RARE, which produces P_prime by multipling T with P """

    def __init__(self, F, I_r_size):
        """ Generate P_hat and inv_delta_C for later """
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.I_r_height, self.I_r_width = I_r_size
        self.F = F
        self.C = self._build_C(self.F)  # F x 2
        self.P = self._build_P(self.I_r_width, self.I_r_height)
        ## for multi-gpu, you need register buffer
        self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float())  # F+3 x F+3
        self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float())  # n x F+3
        ## for fine-tuning with different image width, you may use below instead of self.register_buffer
        # self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda()  # F+3 x F+3
        # self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda()  # n x F+3

    def _build_C(self, F):
        """ Return coordinates of fiducial points in I_r; C """
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = -1 * np.ones(int(F / 2))
        ctrl_pts_y_bottom = np.ones(int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return C  # F x 2

    def _build_inv_delta_C(self, F, C):
        """ Return inv_delta_C which is needed to calculate T """
        hat_C = np.zeros((F, F), dtype=float)  # F x F
        for i in range(0, F):
            for j in range(i, F):
                r = np.linalg.norm(C[i] - C[j])
                hat_C[i, j] = r
                hat_C[j, i] = r
        np.fill_diagonal(hat_C, 1)
        hat_C = (hat_C ** 2) * np.log(hat_C)
        # print(C.shape, hat_C.shape)
        delta_C = np.concatenate(  # F+3 x F+3
            [
                np.concatenate([np.ones((F, 1)), C, hat_C], axis=1),  # F x F+3
                np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1),  # 2 x F+3
                np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1)  # 1 x F+3
            ],
            axis=0
        )
        inv_delta_C = np.linalg.inv(delta_C)
        return inv_delta_C  # F+3 x F+3

    def _build_P(self, I_r_width, I_r_height):
        I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width  # self.I_r_width
        I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height  # self.I_r_height
        P = np.stack(  # self.I_r_width x self.I_r_height x 2
            np.meshgrid(I_r_grid_x, I_r_grid_y),
            axis=2
        )
        return P.reshape([-1, 2])  # n (= self.I_r_width x self.I_r_height) x 2

    def _build_P_hat(self, F, C, P):
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1))  # n x 2 -> n x 1 x 2 -> n x F x 2
        C_tile = np.expand_dims(C, axis=0)  # 1 x F x 2
        P_diff = P_tile - C_tile  # n x F x 2
        rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False)  # n x F
        rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps))  # n x F
        P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
        return P_hat  # n x F+3

    def build_P_prime(self, batch_C_prime):
        """ Generate Grid from batch_C_prime [batch_size x F x 2] """
        device = batch_C_prime.device
        batch_size = batch_C_prime.size(0)
        batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
        batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
        batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
            batch_size, 3, 2).float().to(device)), dim=1)  # batch_size x F+3 x 2
        batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros)  # batch_size x F+3 x 2
        batch_P_prime = torch.bmm(batch_P_hat, batch_T)  # batch_size x n x 2
        return batch_P_prime  # batch_size x n x 2

再通过sampler 进行p点采样信息,防止变换后的p点超出边界.

这样,aster完成了对弯曲文本图像的校正.

网络不需要额外标注信息,因为文字识别的loss导致前面cnn梯度信息专注于文字区域本身,这部分信息可以有效利用作为图像校正的loss.
而TPS不用tanh作为激活函数,而是采用了最后一层全连接网络的方式,fc层作为线性激活函数,能在训练阶段保留更多的期望的梯度信息.

一点点小疑惑:

  1. 在变换中为什么选择了作为核函数,相比其他核函数的优势?
  2. 变换方式的选择
    \mathbf{c}_{i}^{\prime}=\mathbf{T}\left[\begin{array}{c} 1 \\ \mathbf{c}_{i} \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{1}\right\|\right) \\ \vdots \\ \phi\left(\left\|\mathbf{c}_{i}-\mathbf{c}_{K}\right\|\right) \end{array}\right], i=1, \ldots, K

对于为何它要计算它与所有控制点的欧式距离(为何不是只计算相对应的点的距离)

你可能感兴趣的:(Aster论文:SPN校正图像部分理解)