- 编程题-在排序数组中查找元素的第一个和最后一个位置(中等)
Kevin Kou
数据结构算法c++二分查找
题目:给你一个按照非递减顺序排列的整数数组nums,和一个目标值target。请你找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值target,返回[-1,-1]。你必须设计并实现时间复杂度为O(logn)的算法解决此问题。解法一(二分查找):直接遍历所有数组nums中元素时间复杂度为O(n),没有利用到数组升序排列的条件。由于数组已经排序,因此整个数组是单调递增的,我们可以利用
- LVS(Linux Virtual Server)概述
afei00123
Linux
目录1.LVS简介2.LVS的组成3.LVS负载均衡的三种包转发方式3.1NAT(网络地址映射)3.2IPTunneling(IP隧道)3.3DirectRouting(直接路由)4.LVS相关术语5.LVS-NAT模式工作原理6.LVS-DR模式工作原理7.LVS的负载调度算法1.LVS简介LVS(LinuxVirtualServer)即Linux虚拟服务器,是由章文嵩博士主导的开源负载均衡项目
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- SpringBoot Jwt令牌的使用(黑马javaweb)
liuaiguo75
SpringBootJAVAIdeaspringboot后端javaspringintellij-idealog4jmybatis
JWT概念JSONWebToken(JWT)是一种开放标准(RFC7519),它定义了一种紧凑和自包含的方式,用于作为JSON对象在各方之间安全地传输信息。这个信息可以被验证和信任,因为它是数字签名的。JWTs可以使用秘密(使用HMAC算法)或使用RSA或ECDSA的公钥/私钥对进行签名。JWT作用1、授权2、信息交换JWT示例代码1、SpringBoot中引入JWTio.jsonwebtoken
- 第六届MathorCup高校数学建模挑战赛-A题:淡水养殖池塘水华发生及池水自净化研究
格图素书
大数据竞赛赛题解析数学建模
目录摘要1问题的重述2问题的分析2.1问题一的分析2.2问题二的分析2.3问题三的分析2.4问题四的分析2.5问题五的分析3.问题的假设4.符号说明5.模型的建立与求解5.1问题一的建模与求解5.1.1分析对象与指标的选取5.1.2折线图分析5.1.3相关性分析5.1.4问题1的结果分析5.2问题二的建模与求解5.2.1分析对象与指标的选取5.2.2Topsis算法评价5.2.3综合污染指数法5.
- 【GA MTSP】基于matlab遗传算法求解多旅行商问题(目标函数:最短距离 单起点多终点)【含Matlab源码 4354期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(研究室版
- 模型应用管理的成功之道:策略、工具与团队协作
项目管理工具
管理模型应用涉及多个方面,包括模型的开发、部署、监控、优化和维护。以下是管理模型应用的关键步骤和策略:1.模型开发●需求分析:明确业务需求,确定模型的目标和评估指标。●数据准备:收集、清洗和预处理数据,确保数据质量。●模型选择:根据问题类型选择合适的算法和模型架构。●训练与验证:使用训练数据训练模型,并通过验证集评估模型性能。●超参数调优:通过交叉验证、网格搜索等方法优化模型超参数。2.模型部署●
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 2024年前端最全Java进阶(五十五)-Java Lambda表达式入门_eclipse lambda(2),程序员面试技巧和注意事项
2401_84435192
程序员前端面试学习
算法冒泡排序选择排序快速排序二叉树查找:最大值、最小值、固定值二叉树遍历二叉树的最大深度给予链表中的任一节点,把它删除掉链表倒叙如何判断一个单链表有环由于篇幅限制小编,pdf文档的详解资料太全面,细节内容实在太多啦,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!如果你觉得对你有帮助,可以戳这里获取:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】"And
- 【Matlab算法】[特殊字符]基于人工势场的多机器人协同运动与避障算法研究(附MATLAB完整代码)
Albert_Lsk
MATLAB算法实现与应用matlab算法机器人人工智能开发语言算法应用避障算法
基于人工势场的多机器人协同运动与避障算法研究摘要1.引言2.方法说明2.1人工势场模型2.2运动控制流程3.核心函数解释3.1主循环结构3.2力计算函数4.实验设计4.1参数配置4.2测试场景5.结果分析5.1典型运动轨迹5.2性能指标6.总结与建议成果总结改进方向附录:完整MATLAB代码参考文献摘要本文提出了一种基于人工势场法的多机器人协同运动与避障算法,通过MATLAB实现仿真验证。算法通过
- java面试八股文(Redis 篇)
全栈小陈༻
java面试题分享java面试redis
Redis一、概述什么是RedisRedis(RemoteDictionaryServer)是一个使用C语言编写的,开源的(BSD许可)高性能非关系型(NoSQL)的键值对数据库。Redis可以存储键和五种不同类型的值之间的映射。键的类型只能为字符串,支持五种数据类型:字符串、列表、集合、散列表、有序集合。与传统数据库不同的是Redis的数据是存在内存中的,所以读写速度非常快,因此redis被广泛
- c++扑克牌1.0
wangyuxuan1029
AtCoderc++开发语言
c++扑克牌1.0此为第一版,需要多个人玩,之后更新单人版。蒟蒻小游戏,大佬勿喷有问题请打在评论区!!代码如下:#include#include#include#include#include#include#include#defineKEY_DOWN(VK_NONAME)((GetAsyncKeyState(VK_NONAME)&0x8000)?1:0)usingnamespacestd;in
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- python栈实战 迷宫寻找出口
#岩王爷
深度优先算法
迷宫问题,作为计算机科学和算法设计中的一个经典问题,不仅考验了我们对数据结构的理解和应用,还锻炼了我们解决复杂问题的能力。在众多的解决方案中,利用栈来实现深度优先搜索(DFS)是一种直观且高效的方法。栈,作为一种基础的数据结构,其特性使得它在处理需要回溯的场景时显得尤为合适。在迷宫问题中,当我们沿着某条路径深入探索时,可能会遇到无法继续前行的死胡同。此时,栈的作用就凸显出来了:我们可以将当前的位置
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- cpp智能指针
xianwu543
数据库pythondjangoc++mysql
普通指针的不足new和new[]的内存需要用delete和deletel]释放。程序员的主观失误,忘了或漏了释放。程序员也不确定何时释放。普通指针的释放类内的指针,在析构函数中释放。C++内置数据类型,如何释放?new出来的类,本身如何释放?C++11新增三个智能指针类型unique_ptrshared_ptrweak_ptr一、智能指针unique_ptrunique_ptr独享它指向的对象,也
- idea新增java快捷键代码片段
LeoGoGoGoo
开发问题汇总intellij-ideajavaide
最近在写一些算法题,有很多的List<List这种编写,想着能否自定义一下快捷键直接在写代码输入:lli,即可看见提示
- 滑动窗口算法笔记(C++)
程序员阿荣
算法和数据结构算法笔记c++
滑动窗口算法是一种基于双指针技巧的高效算法,常用于解决数组或字符串上的一些特定问题.算法讲解基本概念滑动窗口算法可以想象成在一个数组或字符串上有一个固定大小或者可变大小的窗口,该窗口在数组或字符串上从左到右滑动.在滑动的过程中,根据具体问题的要求,对窗口内的元素进行计算和操作.窗口的大小可以根据问题的不同而变化,有时是固定的,有时是动态调整的.算法实现步骤初始化:定义两个指针(例如left和rig
- C++设计模式——Singleton单例模式
程序员与背包客_CoderZ
C/C++设计模式c++设计模式单例模式c语言开发语言
一、单例模式的定义单例模式,英文全称SingletonPattern,是一种创建型设计模式,它保证一个类在程序中仅有一个实例,并对外提供一个访问的该类实例的全局接口。单例模式通常用于需要控制对象资源的开发场景,一个类只创建一个对象的设计,既可以避免创建过多副本所造成的资源浪费现象,又可以避免引发数据一致性等问题。在数据库连接、线程池设计、日志系统设计等开发场景,经常使用单例模式来创建对象,可以有效
- 秒懂倒位序算法
零度随想
一倒位序的实现:倒位序则是把原数的二进制表示倒过来写就成了原数的倒位数。倒位序的二进制实现N=8倒位序----------------顺序0(000)-----------0(000)4(100)-----------1(001)2(010)-----------2(010)6(110)-----------3(011)1(001)-----------4(100)5(101)----------
- 线性回归、逻辑回归及SVM
@迷途小书童
机器学习
1,回归(LinearRegression)回归其实就是对已知公式的未知参数进行估计。可以简单的理解为:在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值(对于多个参数要枚举它们的不同组合),直到找到那个最符合样本点分布的参数(或参数组合)。当然,实际运算有一些优化算法,肯定不会去枚举的。注意,回归的前提是公式已知,否则回归无法进行。回归中的公式基本都是数据分
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- Java基础算法题
Eugene__Chen
算法数据结构
简介实现一些基本的算法,你可以不看,但是不能不会,算法小白可以跟着一起练习。二分查找题目1:查找目标值的第一个出现位置要求:给定一个升序数组nums和目标值target,返回target第一次出现的索引,若不存在返回-1。示例:输入:nums=[1,2,2,2,3],target=2→输出:1输入:nums=[5,7,7,8,8,10],target=6→输出:-1答案:publicintfirs
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- LVS的DR模式
扮瘦人
LVS负载均衡lvs网络
一、DR模式DR模式:直接路由模式1.1DR模式的工作方式调度器在整个LVS集群当中是最重要的。在NAT模式下,调度器负责接受请求,同时根据负载均衡的算法转发流量,响应给客户端。DR模式下,调度器依然负责接受请求,同时根据负载均衡的算法转发流量,区别在于响应直接由RS响应给客户端。直接路由DirectRouting,是一种二层转发模式,二层转发的是数据帧,根据MAC地址和目的MAC地址进行转发。不
- C语言大型工程框架设计之设备管理
_DMing
嵌入式开发c语言嵌入式系统架构
好久没上来写写了,突然间手痒了整点有意思的东西以便日后回顾。C语言框架设计主要就是以面向对象的思想来进行底层的设计,参考Linux的内核和驱动层设计,设计完成后后续迭代只需在应用层进行添加修改即可,可极大的提高程序的可移植性、可扩展性、多人开发效率等等,对于需要长时间迭代,多人开发的大型项目工程尤为重要。以AGV小车主控制器MCU程序外部设备管理为例,车上包含众多外设需通过CAN总线同MCU通讯,
- 2025嵌入式高频面试题解析
jiuri_1215
嵌入式面试题
一、概述到了年初,是求职者最活跃的时间。本文梳理了嵌入式高频面试题,帮助求职者更好地准备面试,同时也为技术爱好者提供深入学习嵌入式知识的参考。二、C语言基础2.1指针与数组问题1:指针和数组的区别是什么?解析:虽然指针和数组在某些情况下表现相似,但它们本质上是不同的。数组是一块连续的内存空间,其大小在编译时就已确定;而指针是一个变量,用于存储内存地址。例如:intarr[5]={1,2,3,4,5
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比