一文搞懂交叉熵

交叉熵在loss函数中使用的理解

交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近在做文本任务时,需要基于交叉熵自定义一些复杂的损失函数,发现自己对交叉熵的理解有些模糊,不够深入。参考了该博文,复制记录,在原文中做了少量更改。

信息论

交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

1 信息量

首先是信息量。假设我们听到了两件事,分别如下:
      事件A:巴西队进入了2018世界杯决赛圈。
      事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设X是一个离散型随机变量,其取值集合为X概率分布函数p(x)=Pr(X=x),x∈χ则定义事件X=x0的信息量为:

                                                 

由于是概率所以p(x0)的取值范围是[0,1][0,1],绘制为图形如下:

                                                         这里写图片描述
                                         可见该函数符合我们对信息量的直觉


2 熵

考虑另一个问题,对于某个事件,有n种可能性,每一种可能性都有一个概率p(xi)
这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

序号 事件 概率p 信息量I
A 电脑正常开机 0.7 -log(p(A))=0.36
B 电脑无法开机 0.2 -log(p(B))=1.61
C 电脑爆炸了 0.1 -log(p(C))=2.30

* 注:文中的对数均为自然对数

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
                                       
其中n代表所有的n种可能性,所以上面的问题结果就是

                                    
 
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
                                       

3 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

维基百科对相对熵的定义:

In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q.

即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。

KL散度的计算公式:
                                       

n为事件的所有可能性。
DKLDKL的值越小,表示q分布和p分布越接近


4 交叉熵

对上述KL散度的计算公式变形可以得到:
                                      一文搞懂交叉熵_第1张图片
等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:
                                      
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即DKL(y||y^),由于KL散度中的前一部分−H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

交叉熵的应用

1 为什么要用交叉熵做loss函数?

在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,比如:
                                      
这里的m表示m个样本的,loss为m个样本的loss均值。
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?

2 交叉熵在单标签分类问题中的使用

这里的单标签类别是指,如每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单标签分类问题上基本是标配的方法。loss计算公式为:
                                       
上式为一张样本的loss计算方法。上述loss表达式中的n代表着n种类别。
举例说明,比如在一个猫 、青蛙 、老鼠的单标签分类任务中,对应的标签和预测值

* 青蛙 老鼠
       Label         0         1         0
       Pred        0.3        0.6        0.1

注意,单标签二分类中用sigmoid计算Pred,单标签多分类中用softmax计算Pred,本例显然用softmax计算。那么
                               
对应一个batch的loss就是   
                                       
其中,m为当前batch的样本数

3 交叉熵在多标签分类问题中的使用

这里的多标签分类是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单标签分类问题的标签不同,多分类的标签是n-hot。

举例说明, 比如在一个猫 、青蛙 、老鼠的多标签分类任务中,对应的标签和预测值:

* 青蛙 老鼠
       Label         0         1         1
       Pred        0.1        0.7        0.8

值得注意的是,这里的Pred不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Pred值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。

同样的,交叉熵的计算也可以简化,即
                                
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:
           
单张样本的loss即为loss=loss猫+loss蛙+loss鼠
每一个batch的loss就是:
             
式中m为当前batch中的样本量,n为类别数。

你可能感兴趣的:(深度学习,机器学习)